Section 7

Program Sequencer

NKAZTE

ANALOG
/ENGINEERIN o DEVICES

ADSP-BF533 Block Diagram

N L1
Core R .
Timer Instruction
& Memory
Per]\f/;)m‘lance Core LRO 12
onitor Processor \ L1 Data
LD 1\32
JTAG/ v Memory
Debug \\ >
SD32
DMA Mastered 32 % 3 %ore DAObus OO ;’E‘S% 0 %Core Dibus 13 /lcore DAl bus 64 ’I/ Core I'bus
bus Core Clock (CCLK) Domain
CORE/SYSTEM BUS INTERFACE System Clock (SCLK) Domain
A 7'y
16 DMA Core Bus (DCB)
h 4 16
< » Data
Watcl?dog Real Time Clock A e DMA Controller [~ i EBIU < » Address
And Timers Controller Management 16 < > 1
Contro
4 ') f DMA Ext Bus External Port Bus
16 ¥ Fi e (DEB) (EPB)
. Peripheral Access Bus (PAB)
= DMA Access Bus = . N
. (DAB) . . =
\ A / \ 4 vy v \ 4 External Access Bus
Programmable UARTO 1KB internal (EAB)
SPORTSs SPI PPI
flags IRDA Boot ROM
KAZTE ANALOG
ENGINEERIN . ANAQOS

Program Sequencer Features

e The Program Sequencer controls all program flow:

— Maintains Loops, Subroutines, Jumps, Idle, Interrupts and
Exceptions

— Contains an 10-stage instruction pipeline

— Includes Zero-Overhead Loop Registers

NKAZTE

N/ ENGINEERIN

7-3

ANALOG
DEVICES

Program Sequencer

(Fipeline Control and Hazard Detection)
4 t % To EU, DAS,
- LIVIL Pipes

Instruction Decode

Memaory and [. _

Alignment Instruction Address

) ™ ard System Mipel nes
Events &

Interrupt &
Caontrol

Fetch/Zranch/Loop

N

KAZTE ANALOG
DEVICES

ENGINEERING 24

Sequencer-Related Registers

Register Name Description

SEQSTAT Sequencer Status register
Return Address registers: See “Events and Sequencing”
on page 4-18.

RETX Exception Return

RETN NMTI Return

RETI Interrupt Return

RETE Emulation Return

RETS Subroutine Return
Zero-Overhead Loop registers:

LCO, LC1 Loop Counters

LT0, LT1 Loop Tops

LBO, LB1 Loop Botroms

FP, SP Frame Pointer and Stack Pointer: See “Frame and Stack
Pointers” on page 5-5

SYSCFG System Configuration register

CYCLES, CYCLES2 Cycle Counters: See “CYCLES and CYCLES2 Regis-
ters” on page 19-25

PC Program Counter

KAZTE

ENGINEERIN

7-5

ANALOG
DEVICES

Program Flow Instructions

Program Flow Instruction Instruction Function
JUMP Unconditional Branch
IF CC JUMP Conditional Branch
IF !CC JUMP
CALL Subroutine call
RTS,RTI,RTX,RTN,RTE Return from Flow interrupter
LSETUP Set up Hardware Loop
e Jump (P5); [* indirect jump instruction */
e Jump (PC + P3); [* indirect jump with offset (PC-relative) */
o Call (P5); I* RETS register is loaded with address
of instruction after call */
e Call (PC + P3); I* RETS register is loaded with address

of instruction after call */
e |IF CC Jump <label>; /* jump on condition cc=1*/
e Call <label>; [* OK within 24-bit offset from PC */
NKAZTE

: ANALOG
N/ ENGINEERIN 5 DEVICES

Conditional Execution — CC Bit

e Condition Code Flag (CC bit) resolves
— Conditional branch
e e.g., IF!CC JUMP TO_END;
— Conditional move
e eg.,IFCCr0=r1;
e Some ways to access CC to control program flow
— Dreg value can be copied to CC, and vice-versa
— Status flag can be copied into CC, and vice-versa
e e.g.,CC=AV1;
— CC can be set to result of a Preg comparison
— CC can be set to result of a Dreg comparison
e e.g., CC = R3==R2;
— BITTST instruction
e Refer to Chapter 4 in Workshop for more info on CC bit

KAZTEK ANALOG

ENGINEERING o DEVICES

ADSP-BF533 Execution Pipeline

e 10-stage super-pipeline

e The sequencer ensures that the pipeline is fully interlocked and
that all the data hazards are hidden from the programmer

o If executing an instruction that requires data to be fetched, the
pipeline will stall until that data is available

NKAZTE
ANALOG
s/ ENGINEERIN " DEVICES

Instruction Pipeline

Pipeline Stage

Description

Instruction Fetch 1 (IF1)

Start instruction MEmaory access.

Instruction Ferch 2 (1F2)

Intermediate memory pipeline.

Instruction Ferch 3 (1F3)

Finish L1 instruction memory access.

Instruction Decode (DEC)

Align instruction, start instruction decode, and access Pointer
register file.

Address Calculation (AC)

Calculate data addresses and branch targer address.

Execute 1 (EX1)

Start access of data memory.

Execurte 2 (EX2)

Register file read.

Execute 3 (EX3)

Finish accesses of data memory and start execution of dual
cycle instructions.

Execute 4 (EX4)

Execure single cycle instrucrions.

Write Back (WDB)

Write states to Dara and Pointer register files and process
events.

KAZTE

ENGINEERIN

7-9

ANALOG
DEVICES

ADSP-BF533 Execution Pipeline

Inst Inst Inst Inst. |Address

Fetch1 |Fetch2 |Fetch3 |[Decode| Calc | =X | BX2 | Bx3 | Bx4 | WB
Inst Inst Inst Inst. |Address
Fetch1 |Fetch2 |Fetch3 |Decode| Calc | =X | BX2 | BX3 | Bx4 | WB

Pipeline Stage

IF1 IF2 IF3 | DC AC | EX1 EX2 | EX3 | EX4 WB

T 1 Insta | Inst9 | Inst8 | Inst7 | Inst6 | Inst5 | Inst4 | Inst3 | Inst2 | Inst1
I 2 Insta | Inst9 | Inst8 | Inst7 | Inst6 | InstS | Inst4 | Inst3 | Inst2
M 3 Insta | Inst9 | Inst8 | Inst7 | Inst6 | InstS | Inst4 | Inst3
E 4 Insta | Inst9 | Inst8 | Inst7 | Inst6 | InstS | Inst4
5 Insta | Inst9 | Inst8 | Inst7 | Inst6 | InstS

6 Insta | Inst9 | Inst8 | Inst7 | Inst6

7 Insta | Inst9 | Inst8 | Inst7

8 Insta | Inst9 | Inst8

9 Insta | Inst9

: 10 Insta

7-10 DEVICES

Pipeline Events

o Stall

— A latency stall condition can occur when two instructions require extra
cycles to complete, because they are close to each other in the assembly
program. Other stalls can be memory or loop related. Stalls can be
diagnosed with the Pipeline Viewer, and can be remedied with some
rescheduling.

o Kill

— Instructions after a branch are invalidated in the pipeline, because they will
have entered the pipeline before the actual branch instruction gets serviced

e Multicycle Instruction

— These instructions take more than one cycle to complete. These extra
cycles cannot be avoided without removing the instruction that caused
them.

o See EE-197 Appnote for a complete list of stalls and multicycle
instructions.

JOKAZTEK | ANaLoG

SSYNC and CSYNC instructions

e SSYNC instruction synchronizes “the System”, executing
everything in the processor pipeline, and completing all pending
reads and writes from peripherals.

— Until SSYNC completes, no further instructions can enter the
pipeline.

e CSYNC instruction synchronizes “the Core”, executing
everything in the processor pipeline

— CSYNC is typically used after Core MMR writes to prevent
imprecise behavior.

KAZTEK

ENGINEERING

ANALOG
7-12 DEVICES

Some Examples of Stall Conditions

e Use of a Preg loaded in the previous instruction causes a 3-cycle stall
— PO=[Pl++];
— RO=[PO] ;
e Use of a Preg which was transferred from Dreg in the previous
instruction causes a 4-cycle stall.
— PO=RO;
— P1=P0+P2;
o Back-to-back multiplication where the result of first multiplication is
used as an operand of the second multiplication causes 1-cycle stall
— RO = Al+=R1.L*R2.L;
— R1 = A1+=R0O.L*R2.L;
¢ Dual data fetch from the same Bank (A,B), 16KB half-bank (A16
matches), sub-bank (A13 and A12 match), and 32-bit polarity (A2
matches) takes 2 cycles
(e.g. 10 is address 0xFF80 1344, 11 is address 0xFF80 1994)
R1 =R4.L * R5.H (IS) | R2 = [10++] || [I1++] = R3;

@\KAZTE
\LY/ ENGINEERING 7-13 I%IEI\/}\IIEECI)E(S5

Avoiding Pipeline Stalls

eMost common numeric operations have no instruction latency
eApplication note EE-197 available on avoiding stalls
—Gives instruction combinations with associated stall info

» VDSP++ 3.5 Pipeline Viewer highlights Stall, Kill conditions

Pipeline Yiewer |
T Executel Execut | Executel | Writeback |‘
2087 Rl =— PO = I0.H... L.. BO.H.. BO.L. .. 1o =. .
088 S/R1l =... B FO H.. I0.1.. BO.H.. BO.T..
2089 S|R1 =... Bl FD =.. I0.H.. I0.L.. EO.H. .
2000 8| R1 = B B PO =.. I0.H.. I0.L..
2091 = B B B PO =.. I0.H. .
2092 ... B B Bl B FO =..
z09: W JUMP. .. Fl =... B Bl B Bl
2094 @ K JUMP . . . Rl =... Bl B B i
zo9s W [| JUMP. .. Rl =... B Bl
zooe @] |] [Kl JUMP . . . EFl =... Bl
2097 Details for stage Decode (cycle 2096) - JUHE . .. Rl =
2098 F'.l:ll:lress_: Inwalid : . . JUHP . T
Instruction: Inalid
2099 Event 0: - . -
2100 Type: Kil Im+... H [Kl []
2101 Cause: Mispredict, Interrupt, Refetch Bl =. . 0 +.
2102 IDIE : Rl = . 0+] hd|

MKAZTE
ENGINEERIN By,

ANALOG
DEVICES

Change of Instruction Flow

e When a change of flow happens, a new address is presented to
the Instruction Memory Unit
— There will be a minimum of four cycles before the new instructions

appear in the decoder (except when utilizing the hardware loop
buffers)

e When an instruction in a given pipeline stage is killed, all the
instructions in stages above it will also be killed

KAZTEK

ENGINEERING

ANALOG
7-15 DEVICES

Unconditional Branches (JUMPS) in the Pipeline

*The Branch target address calculation takes place in the AC

stage of the pipeline

*For all the unconditional branches, the Branch Target
address is sent to the Fetch address bus at the beginning of
the next cycle (EX1 stage of the branch instruction).

*The latency for all unconditional branches is 4 cycles

1 2 3 4 5 6 7 8 9 10 11 12 13
IF1 1 Br D 13 14 15 BT
1F2 11 Br 2 13 14 15 BT
IF3 11 Br 2 I3 14 15 BT
DC 11 Br NOP | NOP | NOP | NOP BT
AC 11 Br | NOP | NOP | NOP | NOP | BT
EX1 11 Br | NOP | NOP | NOP | NOP | BT
EX2 11 Br | NOP | Nop | NOP | NOP | BT
EX3 11 Br_| NOP | NOP | NOP | NQP
EX4 11 Br | NOP | NQP | NOP
WR 11 Br NOP | NOP

11: Instruction Before the Branch
12: 15t Instruction After the Branch

13: 2" |nstruction After the Branch

KAZTE

ENGINEERING

7-16

14: 3 |nstruction After the Branch

15: 4t |nstruction After the Branch

Br: Branch Instruction

BT: Instruction at the Branch Target

ANALOG
DEVICES

Conditional Branches (Jumps) in the Pipeline

e Conditional Branches (Jumps) are executed based on the
CC bit.
e A static prediction scheme (based on BP qualifier in
instruction) is used to accelerate conditional branches
— Example: |IF CC JUMP user_label (bp) ;
e The branch is handled in the AC stage. In the EX4 stage, the
sequencer compares the true CC bit to the predicted value.

— If mis-predicted, the branch is corrected and the correction address
is put out in the WB stage of the branch instructions

Prediction Taken Not taken
Outcome Taken Not taken Taken Not taken
Total Cycles 5cycles 9cycles 9 cycles 1 cycle
to Execute
Pon

Protection Model

o User mode protected instructions
— RTI, RTX, RTN, RTE
— CLI, STI
— RAISE
— IDLE
e User mode protected registers
— RETI, RETX, RETN, RETE
— SEQSTAT, SYSCFG
— All Memory Mapped Registers

§/ENGINEERIN

NKAZTE

7-18

ANALOG
DEVICES

Sequencer Status Register (SEQSTAT)

e SEQSTAT contains information about current Sequencer state
and diagnostic information about the last event

31 30 20 28 27 26 26 24 23 22 21 20 19 1% 17 16
[efee oo fofoofa]e]o]o]o]e [:-]0] Reset = 0x0000 0000

HWERRCAUSE[4:2]
See description under bits [1:0]
balow.
15 14 1312 11 10 % B 7 68 5 4 3 2 1 0
(o[| |EmjEnynjem{oaoa] e [] fo []e |
—
HWERRCAUSE[1:0]
Holds cause of last hardware ermor EXCAUSE[5:0]

gonerated by the core. Hardware Helds infermation about the
Emﬁ r;rlgger Intermupt numbar 5 last-execuled exception.

SFTRESET
0 - Last core resel was nol a

software-riggered reset

1 - Last core resel was a soft-
ware-triggered resel, rather
than a hardware power-up resal

MKAZTE
‘ENGINEERIN

7-19

ANALOG
DEVICES

BF533 System Configuration Register (SYSCFG)

e SYSCFG controls the processor configuration.

31 30 20 28 27 26 25 24 23 22 21 20 19 18 17 16
Io |o |o |0 Io |o |0 |o Io |o |o |o Io |o |o |o| Reset = 0x0000 0030

15 14 13 12 11 10 9

CICAENEN CNENENEN CACHENKN SRENENCY

Must be set to 1 J— ‘ L
CCEN (Cycle Counter Enable) SSSTEP (Supervisor Sin-
0 - Disable 64-bit, free-running gle Step)
1- CE?!\EIZOGU;};E free-running When set, a Supervisor
cycle counter exception is taken after each

instruction is executed. It
applies only to User mode, or
when processing interrupts in
Supervisor mode. It is
ignored if the core is pro-
cessing an exception or
higher priority event. If pre-
cise exception timing is
required, CSYNC must be
used after setting this bit.

NKAZTE

/ENGINEERIN

7-20

ANALOG
DEVICES

Hardware Loop Buffers

e The ADSP-BF533 DSP provides two sets of dedicated registers to support two
zero-overhead nested loops

e One way to load these registers is by using the Loop Setup (LSETUP) instruction;

Pt OxZ0

. . e) . First/Last Address ofthe | PC-Relative Offset Used Effective Range of the Loop
LSETUP ¢ lp_start, lp_end) LCO Pt -
Ip_start Loop Compute the Loop Start Address | Start [nstruction
RE RO + RL || RE = [P2++] || R2 = [I1++]1 [op 1 Fimsi S-hit signed immediate, must bea | 0o 30 byies away from |

muliiple of 2. instruction,
lp_end: RE R + R# . . - :
Bottom | Laa V1=t signed immediate, must bea | 0o 2046 bries away from
Two sets of loop registers are used to manage two nested loops: multiple of 2. ETUP instruction (the defined
]) oo can ke 204 bytes long),
* |C[1:0] — the L-.mp _ount reglsters

L U] —] aLa]} 105 C5s --l',' - . : : : . -
ClEEul [hl- L“' t Tl' F 1L‘|L‘IILHH Ikhhtu\ When Lix i, the |l.'".'lp is disabled, and a s I1g|l.' pass of the code

* LE[1:0] — the Loop Bottom address registers S

o [f the desired loop size exceeds the largest LSETUP size in the table above,
LT[1:0], LB[1:0], LC[1:0] can be set manually

e [f more than 2 nested loops are required, the stack must be used

KAZTE
ENGINEERING 7-21 I%IEI\/}\IIEECI)E(S5

Hardware Loop Buffers

e The two zero-overhead looping mechanisms each use a four-deep
instruction “loop buffer” which acts like a cache
e The loop buffer instructions are the first four instruction of a loop
lsetup(strt, end) 1lcO0 = pd >> 1;
strt: al = rO.h * rl.1, a0 = r0.1 * rl.1l (is) || 20.1 = wli0t+t] || 22 = [18 i
al += ¥r0.1 * r1.h, a0 += r0.h * rl.h (is) || £20.h = w[i10——]
al = ¥0.h * ¥2.1, a0 += 0.1 = v2.1 (is) || 0 = [il++] [23 = [13+£H]"
al += rO.h * r2.h, a0 += r0.1 * r2.h (is) || r0.1 = w[il++]
al += r0.1 * r3.1, a0 += rO0O.h * r3.1 (is) || rO0O.h = w[il-=-] || rl = [i3++];
al += rO.h * r3.h, a0 += r0.1 * r3.h (is) || r0 = [i2++]
al += rO.h * r1.1, a0 += r0.1 * r1l.1 (is) || 0.1 = w[i2++] || r2 = [i3++];
al += r0.1 * rl.h, a0 += rO.h * rl.h (is) || rO.h = w[i2--] || rl = [i3++];
r6.h = (al += rO.h * r2.1), r6.1 = (a0 += r0.1 * r2.1) (is)
end: mnop || [pl++] = r6 || r0 = [10++];
e The loop buffer instructions get fetched the first time through the loop,
and are immediately available on subsequent iterations
e The loop buffer is especially helpful if the program resides in external
memory, because of the access latencies involved in that case
KAZTE ANALOG

ENGINEERING 7.22 DEVICES

Loop-Related Stalls

The ADSP-BF533 has two loop buffers that correspond to the

two zero-overhead loop units. There are two situations to
consider:

— A 3 cycle stall is incurred if the LSETUP is not immediately followed
by the loop top

— If the first instruction of the loop is 64-bits, it must be 64-bit aligned
or it will incur an additional 1 cycle stall

KAZTEK

ENGINEERING

ANALOG
7-23 DEVICES

Event Controller

NKAZTE

| ANALOG
/ENGINEERIN 7.24 DEVICES

Events (Interrupts / Exceptions)

The Event Controller manages 5 types of Events:

Emulation (via SW or external pin)
Reset (via SW or external pin)

Non-Maskable Interrupt (NMI) - for events that require immediate
processor attention (via SW or external pin)

Exception
Interrupts
¢ Global Interrupt Enable
e Hardware Error
e Core Timer
¢ 9 General-Purpose Interrupts for servicing peripherals

KAZTE

ENGINEERING -

ANALOG
DEVICES

Interrupts vs. Exceptions

INTERRUPTS EXCEPTIONS
e Hardware-generated e Service Exception
— Asynchronous to program — Return address is the
flow address following the
— Requested by a peripheral excepting instruction
e Software-generated — Never re-executed

_ Synchronous to program flow — EXCPT instruction is in this

— Generated by RAISE category. _ _
instruction e Error Condition Exception
e All instructions preceding the — Return address is the
interrupt in the pipeline are address of the excepting
killed instruction

— Excepting instruction will be
re-executed

The ADSP-BF533 is always in Supervisor
Mode while executing Event Handler
software and can be in User Mode only
while executing application tasks.

KAZTEK ANALOG

ENGINEERING 7-26 DEVICES

Exception Causes

Priority Fxception FEXCALSE
1 Unrecoverable Event 25
2 [-Fetch Multiple CPLE Hics 020
3 [-Ferch Misaligned Access 02 A
Bl [-Ferch Protection Vielation 0<2B
5 [-Ferch CTPLE Miss O 200
[[-Fetch Access Exceptrion 024
i Warchpoint Mawch 028
8 Lindefined Instruction (2]
9 llegal Combination 022
10 [llegal use protected resource 0x2E
11 DAGO Muldiple CPLE Hits 027
12 DAGO Misaligned Access 024
13 DAGO Protection Violation %23
14 DAGO CPLE Miss 026
15 DAGT Muldple CPLE Hits 027
& DAGT Misaligned Access Qw24
17 DAGT Protection YVielation 023
18 DAGT CPLE Miss 026
14 EXCPT instruction m- feld
20 Single Step 0l
21 Trace Buffer el]

KAZTEK
_ ANALOG
ENGINEERING 7.07 DEVICES

Event Priorities

KAZTE

ENGINEERIN

Event Source IV & Core Event Nanpe
Ermulator u] Ehl
Reset L L
Hon Maslkable Interrupt 2 Ml
Exceptions=s 3 EShy
Reserved . Reserved
Hardware Error il W HWY
Core Timer E TR
General Purpose 7 T IVET
General Purpose 8 g [RyEE
General Purpose 39 a3 IviE9
General Purpose 10 10 IWiEA0
General Purpose 11 11 IviG11
General Purpose 12 12 VG2
General Purposs 13 13 R ER k]
General Purpose 14 14 G414
General Purpose 15 15 VIG5

7-28

Highest

Lowest

ANALOG
DEVICES

BF533 System and Core Interrupt Controllers

Vi

AW

Core Event

Event Source IVG # Name
Emulator 0 EMU
Reset 1 RST
Non Maskable Interrupt 2 NMI
Exceptions 3 EVSW
Reserved 4 -
Hardware Error 5 IVHW
Core Timer 6 IVTMR
General Purpose 7 7 IVG7
General Purpose 8 8 IVG8
General Purpose 9 9 IVG9
General Purpose 10 10 IVG10
General Purpose 11 11 IVG11
General Purpose 12 12 IVG12
General Purpose 13 13 IVG13
General Purpose 14 14 IVG14
General Purpose 15 15 IVG15

System Interrupt Source | IVG #!
PLL Wakeup interrupt IVG7
DMA error (generic) IVG7
PPI error interrupt IVG7
SPORTO error interrupt IVG7
SPORT1 error interrupt IVG7
SPI error interrupt IVG7
UART error interrupt IVG7
RTC interrupt IVG8
DMA 0 interrupt (PPI) IVG8
DMA 1 interrupt (SPORTO0 RX) IVG9
DMA 2 interrupt (SPORTO TX) IVG9
DMA 3 interrupt (SPORT1 RX) IVG9
DMA 4 interrupt (SPORT1 TX) IVG9
DMA 5 interrupt (SPI) IVG10
DMA 6 interrupt (UART RX) IVG10
DMA 7 interrupt (UART TX) IVG10
TimerO0 interrupt IVG11
Timer1 interrupt IVG11
Timer2 interrupt IVG11
PF interrupt A IVG12
PF interrupt B IVG12
DMA 8/9 interrupt (MemDMAO) IVG13
DMA 10/11 interrupt (MemDMA1) IVG13
Watchdog Timer Interrupt IVG13

KAZTEK

ENGINEERING!

N

I Note: Default IVG configuration shown.

ANALOG
DEVICES

Event Processing Flow

e TTTT]

CONTROLLER

SYSTEM INTERRUPT CONTROLLER

CORE EVENT CONTROLLER

RESET
i MMl
] EVX
“INTERRUPT i VT MR
A" 1 I HW
—>——" PERIPHERAL 1 =
\4 JNTERR;P; SYSTEM ASSIGN I CORE CCRE CORES
RECQUEST INTERRUPT SYSTEM INTERRUPT EVENT
2] mask prIORITY | > sm;rﬁs] mask f—o VECTOR
(SIC_IMASK) (SIC_IARD..2) 1 (IMASK) TAEBLE
I {EVTi50)
I
il in 1 -~ il
!‘L I
1
SYSTEM SYSTEM Mee: Must insuve bt is I CORE
}r;féuﬁ;lﬁp: [grém.:g:l L~ eleared in STC_ISE before 1 F;IE:EDHIE;;
= - [reruwrrgag from ISR I
]
L]
]
TO DYNAMIC POWER I
3 NANAGEMENT :
I
1
I
1

Mote: Mames in parenthesss are memon-mapped registers.,

NKAZTE

/ENGINEERIN

7-30

BF533 System Interrupt Status Register (SIC_ISR)

e SIC_ISR shows which peripheral interrupts are currently asserted

¢ Must insure the interrupt-generating mechanism that set the SIC_ISR bit is
cleared before exiting the service routine, or the interrupt will be requested
again!

31 30 29 28 27 26 25 24 23 22 21 20 19 18217 16

|n |n |o |0 |o |n |n |a- |n |o |o |0 |0 |t: |ﬂ |c| | Reset = 0x0000 0000

| |— Timer 0 Interrupt
Timer 1 Interrupt

Timer 2 Interrupt
PF Interrupt A
PF Interrupt B

(Read-only)

Software Watchdog Timer Interruplg

Memory DMA Stream 1 Interrupt
Memory DMA Stream 0 Interrupt

15 14 1312 11 10 @& 8 7 6 & 4 3 2 1 0
[ofe o fo fo Jo oo Jofo JofoJo]ofofo]

DMAT Interrupt | |— PLL Wakeup Interrupt
{(UART TX) ‘

DMA Error (generic)
DMASE Interrupt Interrupt

(UART RX) PPI Error Interrupt
DMAS Interrupt (SPI) SPORTO Error Interrupt
DMA4 Interrupt (SPORT1 TX}

SPORT1 Error Interrupt

DMA3 Inlerrupt {SPOHT'I FIX}— SPI Error |n‘errupt
DMA2 Interrupt (SPORTO TX}—————

DMA1 Interrupt (SPORTO0 RX)}
DMAOD Interrupt (PPI)

UART Error Interrupt

Real-Time Clock Interrupts

KAZTE

ENGINEERIN ANALOG

7-31 DEVICES

System Interrupt Mask Register (SIC_IMASK)

e Enable the peripheral to interrupt the core by setting the
corresponding bit in SIC_IMASK

For all bits, 0 - Interrugt masked, 1 - Interrupt enabled.

31 30 28 28 27 26 25 24 23 22 21 20 18 18217 16

elefefefefofofefefefofofee]o]e]

Timer 0 Intarrupt

e Timer 1 Interrupt
Software Watchdog Timer Interrupt Timer 2 Interrupt

Memory DMA Stream 1 Intarrupt L PF Interrupt A
Memory DMA Stream 0 Interrupt ———— P'F Interrupt B

15 14 13 12 11 10 &8 8 T €& & 4

[efe e Jofo o fefofo]e |°I°I°|°I°I°|

DMA? Interrupt PLL Wakeup Interrupt
(UART TX) DMA Error (generic)
DMAE Interrupt Interrupt

(UART RX) —— PPI Error Intarrupt
DMAS Interrupt (SPI1) SPORTO Error Interrupt
DMAS Interrupt (SPORT1 TX SPORT1 Error Interrupt
DMAZ Interrupt (SPORT1 RX)}p—m— 5P Error Interrupt

DMA2 Interrupt (SPORTO TX)
DMA1 Interrupt (SPORTO RX)}———————
DMAD Interrupt (PPI)

UART Error Interrupt
Real-Time Clock Interrupts

NKAZTE

_. ANALOG
ENGINEERIN 7.32 DEVICES

System Interrupt Assignment Register 0
(SIC_IARO)

e The SIC_IARX registers map system interrupts to core IVG
interrupt vectors.

31 30 29 28 2¥ 268 25 24 23 22 21 20 19 18 17 16
Lefofo [r]efefo]oofofofo]o]ofo]o] Reset=0xioo00000
L

Real-Time Clock Interrupt —I L 8P| Error Interrupt

VG select IVG select

UART Error Interrupt SPORT1 Error Interrupt
VG selact IVG select

15 14 13 12 11 10 29 B

|°I<='I°|°I°I°Iﬁlﬂlﬁlﬂlﬂlﬂlﬂlﬁlﬂlﬁl

SPORTO Errer Interrupt —l I— PLL Wakeup Interrupt
WG select IVG select
PPl Error Interrupt DMA Error (Generic) Interrupt
W5 select IVG select
General-Purpose Interrupt Value in SIC_IAR
IVGT
IVGE
VGO
VG0 3
IVl 4
IVG12
IVG13 [
— VG4 7
KAzTE VG135 8
/ENGINEERIN 7.33

ANALOG
DEVICES

System Interrupt Assignment Register 1
(SIC_IAR1)

31 30 29 2B 27 26 25 24 23 22 21 20 18 18 17 16
|n|u|1|1 u|n|1|1|n|-:-|1|1|n|u|1|u|Flasut=ﬂ:33322221
1]

|
DMAT (UART TX) Inlerrupt—l | I DMA4 (SPORTA TX) Interrupt
IVG salect VG select
DMAG (UART RX) Interrupt DMAS (SPI) Interrupt
IVG select VG select

15 14 1312 11 16 8 & 7 & & 4 3 2 1 0
ledelifofodo]r Jodo]o[rfe]ofe]o]r |
| 1 | 1 |

?u?éiéﬂfmn AX) lnl:erruth I— DMAD {PP1) Interrupt
ING select

w;iﬁ.?nm TX) Interru pt ———— ?ﬁ?;;;iﬁ?nm RX) Interrupt
Genenal-Parpose Internpt Value in S1C_1AR
IVGT
IVGE
IVGS
IVG10 3
IVG11 4
IVG12
IVG13
VG114 7

- KAzTE VG135 8
ENGINEERIN ANALOG

7-34 DEVICES

System Interrupt Assignment Register 2
(SIC_IAR2)

31 30 29 28 37 26 25 24 23 22 21 30 19 18 17 16
|0|1 |1 |0 |0 |1 |1 |0 ||:||| |1 ||:| 0 |1 |+:| |1 Reset = 0x6665 5444

Software Watchdog Timer

Interrupt I— FI.\I:G? Inlle rrupt

IVG select select

Memory DMA Stream 1 I':"lf::rt:;lDMA Stream 0
Interrupt

IVG select IVG select

15 14 13 12 11 10 & 8

IC*I*If='|1 I°I1 IDI°I°|' Iﬂ'IUIUI1 |“I°I

PF A Interrupt —l |—Timer 0 Interrupt
IVG select IVG select
Timer 2 Interrupt Timer 1 Interrupt
IVG select IVG select
General-Purpose Intermpt Value in SIC_TAR
IVGT
IVGE 1
IVGE
V10 3
IVG11 4
IVG12
VG133
VG4 7
= KAzTE VG135 8
S/ ENGINEERIN ANALOG

7-35 DEVICES

Core Interrupt Mask Register (IMASK)

e Choose which interrupt to allow servicing of by setting that bit
in IMASK

For all bits, 0 - Interrupt masked, 1 - Interrupt enabled.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

o0Jjojojo |0 |O JO |O |O JO|JO |JOJO]|JO|O|O Reset = 0x0000 001F
15 14 13 12 11 10 P 4 3 2 1 0
oJo o |O JO O 0|0 1 1 J1
IVG15 IVHW (Hardware Error)
IvVG14 IVTMR (Core Timer)
IVG13 IVG?
IVG12 IVG8
IvG11 IVG9
IVG10
KAZTE ANALOG

s/ ENGINEERIN 7.36 DEVICES

Non-interruptible code

¢ Instruction CLI disables interrupts
— copies current IMASK to a Dreg
— clears IMASK

e Instruction STI restores IMASK

e Change to IMASK should be done with CLI

CLI RO; //Save IMASK into RO & clear all interrupt bits in IMASK
BITSET (RO, 8); //Set bit 8 of RO
STI RO; //Restore IMASK with change

NKAZTE

W/ ENGINEERIN o

ANALOG
DEVICES

Core Interrupt Latch Register (ILAT)

e A set bit in ILAT indicates when the corresponding event has been
latched

e The bit is cleared upon entry into the Interrupt Service Routine or
by writing a “1” to ILAT[n] when IMASK|[n] = 0. (n=5-15)
e RAISE n Instruction(n=1, 2, 5-15)
— Forces a bit to be set in ILAT. It ‘raises’ the priority of the execution
e EXCPT n Instruction (n=0-15)

— Forces an exception to occur : EVSW bit is set in ILAT and ‘n’
determines which exception routine to execute

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
[e]o]o [oJo JoJe]oJo]o]o [o]o]o]o]o]| Reset=oxo0000000x

15 14 13 12 11 10 9 8 7 B 5 4 3 2 1 o]

[o [o Jo fo fo Jo Jo o fofo Jo]o]o] IKI

IVG15 ‘ Elu"IU (Emulation) - RO
G114 RST (Reset) - RO
IVGi3 NMI (Mon-Maskable Interrupt) - RO

IvG12 EVX (Exception) - RO

IvG11 IVHW (Hardware Error)
IVG10 IVTMR (Core Timer)
IVG9 waGr
wGa
KAZTEK ANALOG
ENGINEERING! 7.38 DEVICES

Core Interrupt Pending Register (IPEND)

o |PEND tracks currently active or nested interrupts
e [PEND holds current status of all nested events.

e Rightmost bit in IPEND that is currently set indicates interrupt
currently being serviced

31 30 28 2B 27 26 25 24 23 22 21 20 19 18 17 16

e [o]o]o [o [oJoJofo]o]ofo [o]o]o]o]o] Reset=o0x00000010
exceptBit4) 15 14 13 12 11 10 8 8
oo JoTe T To o Je [o o To T+ To e IUID |
IVG15 EMLI (Emulation})
vG14 RST (Reset)
IVG13 NMI {(Non-Maskable Interrupt)
IvG12 EVX (Exception)
vG11 Global Interrupt Disable
IvG10 0 - Interrupts globally enabled
vGs 1 - Interrupts globally disabled
Set and cleared by event con-
troller only.
IVHW (Hardware Error)
IVTMR (Core Timer)
IVG7
IVGs

NKAZTE ANALOG

s/ ENGINEERIN 7.39 DEVICES

Event Vector Table (EVT)

Memory-mapped space containing an entry for each event EVTO0-
EVT15, corresponding to EMU, RST, NMI, ... IVG15

— HW Table with 16 32-bit entries accessed as CORE MMRs
— EVTO0-EVT15 are undefined at Reset

— Entries should be programmed in the Reset service routine with the

corresponding Interrupt Service Routine vector
Each entry holds starting address for that event

When Event #n occurs, instruction fetch starts at address
location stored in EVTn

KAZTEK

ENGINEERING

7-40

ANALOG
DEVICES

Interrupt Service Routine

e Interrupt vector from the Event Vector Table is used as the next
fetch address
e Return address is saved
— RETI, RETX, RETN, RETE based on event

— All interrupts are disabled until the return address (RETI) is pushed
on the stack

e Processor operating mode is set to supervisor or emulation

KAZTE
ANALOG
ENGINEERING 7.41 DEVICES

Nested Interrupts

e To enable another higher priority interrupt to interrupt this
interrupt RETI must be pushed on the stack.

e The state of the processor needs to be saved onto the Stack:

ISR:
[--SP] = RETI; // Interrupts enabled
[--SP] = ASTAT;
[--SP] = FP;
[--SP] = (Rx,Ax,Px,Ix);
(Rx,Ax,Px,Ix) = [SP++];
FP = [SP++];
ASTAT = [SP++];
RETI = [SP++]; // Interrupts disabled
CSYNC; // Wait until RETI load takes effect, may want to use
// SSYNC to confirm system writes have committed.
RTI; // Interrupts enabled
Al Ao

7-42 DEVICES

Non-nested Interrupts

e RETI does not need to be saved on the stack

e All interrupts remain disabled in the ISR

e The state of the processor should be saved on the stack

e RTI is executed to return from interrupt

e Emulation, NMI and Exceptions are still accepted by the system

KAZTE

ANALOG
ENGINEERING 7.43 DEVICES

Deferring Exception Processing

e Exceptions higher priority than interrupts

o If exception handlers are long routines, interrupts are disabled
for long time

e To avoid this situation, the exception handler should be written
to only identify the exception (EXCAUSE field in SEQSTAT
register) and defer the exception processing to a low priority
interrupt by using the RAISE n instruction

KAZTEK

ENGINEERING

ANALOG

7-44 DEVICES

Interrupt Priority Register

e When code branches from a low-priority interrupt to a high-priority
interrupt the write-buffer increase in size from 2 deep to 8 deep to off-
load the store buffer.

o Frees path to L1 memory (IE: context saving to scratchpad)

e When code returns from a high-priority interrupt to a low-priority, the
core will stall until the write-buffer size decreases back to 2 deep.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
ID |o |0 |o |u |D |n |o |n|n |n |n |u |o |n || | Reset = 0x0000 0000

15 14 13 12 11 10 8 & 7 6 5
fofofofofolofofafofo |“|°|°|°I|°|°|

IPRIO_MARK (Priority
Watermark)

0000 - Default, all interrupts
are low priority

0001 - Interrupts 15 through 1
are low priority, interrupt 0 is
considered high priority

0010 - Interrupts 15 through 2

are low priority, interrupts 1
and 0 are considered high
prionty

1110 - Interrupts 15 and 14
are low priority, interrupts 13
through O are considered high
priority

1111 - Interrupt 15 is low prior-
ity, all others are considered

P\ KAZTE high priority

‘ ANALOG
s/ ENGINEERIN 7.45 DEVICES

BF533 L1 Data Memory

- ! SRAM V' SRAM OR CACHE \ 10 BUFFERS
g
z = 4KB
5] -
S
&
F‘J i'_________| _ READ
I ADSP-BF533 1| cache || cache I
ONLY | Tas TAG
: o | R
-
2 1| 4xe 4KB : 4KB 4KB 8X 32 BIT
o
B _: 1 _zer {14
E ! . 32BIT =
g ol _ ;e DMA E
a | - B4BIT __ | uFFer | DMA & .
HEEER ! Victim Buffers:
Z813| = 4KB ake | | sxe 4KB VICTIM . .oppe .
EH | Ll | purmen Victimized Write-Back
- |
o< | cacHE || cacHE
~ | I T || s 1 _ wam Cached Data to external
I | _ READ
| I| cacue || cacue I memory
I L TaG LINE FILL
| = e ! BUFFER
: AKB 4KB : e R 8 X32BIT
| Y] < F ﬂ: .
1 ! » 3:23;}1 & Write Buffer:
- I T « .
< : e sﬂ.alri i . smn _ DMA erte-Through and
|
3 I Non-cached D
= : 4KB 4KB | || 4kB 4KB VICTIM WRITE on-cache ata to
< | BUFFER BUFFER
a I = T =1 I §X 32 BIT 270 8X 32BIT external memory
- !_ ________ 1| cacHE || cacHE
174 TAG TAG [Y _ WRITE
DAG1 LOAD
DAGO LOAD e - L
'y ™ PROCESSOR EXTERNAL L2
STgJR(E;téIFTFER DAG1/0 STORE CORE MEMORY

NKAZTE
ANALOG
ENGINEERIN 7-46 DEVICES

Reference Material

Sequencer

NKAZTE

ANALOG
/ENGINEERIN 7.47 DEVICES

\KAZTE

/' ENGINEERIN

Variations in Program Flow

LINEAR FLOW

ADDRESS:N

INSTRUCTION

N+1

INSTRUCTION

N+2

INSTRUCTION

N+3

INSTRUCTION

N+4

INSTRUCTION

N+5

INSTRUCTION

SUBROUTINE

CALL

-

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

RTS

IRQ

LOOP

LOOP

INSTRUCTION

INSTRUCTION

INSTRUCTION

N TIMES

INSTRUCTION

INSTRUCTION

INTERRUPT

INSTRUCTION

INSTRUCTION

INSTRUCTION

VECTOR

INSTRUCTION

INSTRUCTION

INSTRUCTION

RTI

7-48

JUMP

JUMP

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

IDLE

IDLE

<

INSTRUCTION

WAITING
FORIRQ

INSTRUCTION

OR
WAKEUP

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

ANALOG
DEVICES

Multi-Cycle Instructions

o A 32-bit multiply operation is available
— r0 *= rl; // 3 cycles to execute

e The Push Multiple and Pop Multiple instructions take n cycles to
complete, where n is the number of registers pushed or popped,
assuming L1 memory.

— [--SP] = (R7:0, P5:0); // 14 cycles to execute

e Multi-cycle instructions will not execute faster through
rescheduling.

e See EE-197 Appnote for a complete list of stalls and multicycle
instructions

KAZTEK

ENGINEERING!

ANALOG

7-49 DEVICES

censcsn EVENt Processing Flow

Awake from IDLE!

[- -sp] = P4;
[- -sp] = R4;

“Event A“

Watchdog
MEMDMA1
MEMDMAO

PF B
PF A
Timer 2
Timer 1
Timer 0
DMA7 (UART TX)
DMAG (UART RX)
DMAS5 (SPI)
DMA4 (Sport1 TX
DMAS (Sport1 RX
DMA2 (Sport0 TX
DMA1 (Sport0 RX
DMAQ (PPI)
RTC

R4.I = 0x1000;
P4.H = hi(FLAG_C);
P4.L = Io(FLAG_C);
W[P4] = R4;

R4 = [sp++];

P4 = [sp++];
RTI;

DMA Error
PLL Wakeup

N
S
N3

/Ilear IPEND

Keep ILAT Cleared

CLI RO; /1 0000 I

STIRO; //IMASK = RO;

RO

!

< < S << < < << <
000000 066
N 32 S ©® N O w N =2 Oo

3NIT 3did 340D

ANALOG
7-50 DEVICES

Core Event Control Registers

Bit Event Description ILAT=1 IPEND=1 means IMASK=1
Name means means

0 EMU Emulation Event Event latched Event active <reserved>

1 RST Reset Event Event latched Event pending or active <reserved>

2 NMI Non-maskable Interrupt Interrupt latched Interrupt pending or active <reserved>

3 EVX Exception Event Event latched Event pending or active <reserved>

4 Global Interrupt Disable <reserved> Interrupts globally disabled <reserved>

5 IVHW Hardware Error Interrupt Interrupt latched Interrupt pending or active Interrupt enabled

6 IVTMR Core Timer Interrupt Interrupt latched Interrupt pending or active Interrupt enabled

7-15 IVG7-15 General Purpose Respective interrupt | Respective interrupt pending or Respective
Interrupts #7-#15 latched active interrupt enabled

KAZTEK ANALOG

ENGINEERING 7-51 DEVICES

Semaphores

\KAZTE

; ANALOG
/ENGINEERIN 7.52 DEVICES

Semaphores

Semaphores provide a way of signaling between separate
processes
— A background task may be waiting for a semaphore that may be

provided by an ISR before it can start. The semaphore could
indicated the presence of a new buffer of data.

— CoreA and CoreB could be sharing a buffer in memory, but only
one can access at a time. A semaphore would be used to provide
exclusive access by one core or the other.

For a mutex (multual exclusion) to be effective, one must be able
to check a semaphore to see if a resource is free and then set a
bit to claim it before the other processor has a chance to claim
it. In other words, the read-check-modify-write must be atomic.

KAZTEK

ENGINEERING ANALOG

7-53 DEVICES

Testset

Testset(preg)
Example
testset(p1);

e This instruction reads the byte pointed to by preg, sets the MSB,
and stores the byte back into memory. If the byte was originally
zero, the CC bit is set. If the byte was originally nonzero, the CC
bit is cleared.

— Typically, a zero is used to indicated a free resource. If CC tests
true, the resource is now claimed exclusively for the process.

When done with the resource, the process must clear the
semaphore.

— If CC tests false, it indicates that the resource is being used.
Typically, the process waits until the resource becomes free by
spinning in a tight loop.

KAZTEK

_ ANALOG
ENGINEERING 7.54 DEVICES

