
1

15-1 a

Section 15Section 15

ADSP-BF533 Booting

2

15-2 a

What is Booting?What is Booting?

• Booting is the process of loading application code, stored in an
external memory device, into the various internal and external
memories of the Blackfin Processor.

• Booting is done via the On-Chip Boot Rom located at 0xEF00
0000.

• This presentation describes the following:
− Booting Methods
− On-Chip Boot Rom

3

15-3 a

Booting MethodsBooting Methods

Boot from a 8- / 16- / 24-Bit Addressable SPI
Device11

Slave boot from SPI Master (see EE-240)10

Boot from 8/16-Bit Prom/Flash01

Execute from 16-Bit External ASYNC Bank0
memory (Bypass Boot ROM)00

DescriptionBMODE Pins [1:0]

4

15-4 a

ADSP-BF533
RESET

Jump To 16-Bit External
Memory For Execution

Jump To On-Chip Boot
ROM

BMODE = 00 BMODE = 01, 10, 11

Behavior Upon RESET

5

15-5 a

OnOn--Chip Boot ROM FlowChip Boot ROM Flow

1. Set up Supervisor Mode (doesn’t apply for bypass mode)
− Exits the Reset ISR and uses IVG15 (lowest priority interrupt)

2. Check to see if this boot request was from a software reset
− Check bit 4 of the Reset Configuration Register

• If 1, bypass normal boot sequence, jump to start of L1 memory
(0xFFA0 0000 for ADSP-BF533 or 0xFFA0 8000 for ADSP-BF531
/ ADSP-BF532) for execution

• If 0, run full boot sequence (BMODE pins determines boot type)

6

15-6 a

Boot From 8/16Boot From 8/16--bit Prom/Flashbit Prom/Flash

• The On-Chip Boot Rom sets the following:
− Enable Asynchronous Memory Bank 0 (ASYNC Bank 0)
− Set Bank 0 hold time (R/W deasserted to AOE deasserted)

• 3 cycles
− Set Bank 0 Read/Write Access (Wait States) times

• 15 cycles

7

15-7 a

Boot from SPI Device Boot from SPI Device

• Master Mode
− Uses Slave Select 2 which maps to PF2
− On-Chip Boot Rom sets the Baud Rate Register to 133

• Which, based on a 133MHz system clock, will result in a
133MHz/(2*133) = 500kHz Baud Rate

− Support for 8-,16-, and 24-bit addressable parts

• Slave Mode
− Host downloads boot sequence through SPI port
− PFx pin provides handshake to Host to pace transfers

8

15-8 a

Executable Executable Loader File ConversionLoader File Conversion

• The Loader Utility (elfloader.exe) converts
executables (.DXE) into loader files (.LDR).

• The loader utility parses the input .DXE file
and creates a loader file which consists of
different blocks preceded by headers.

• These headers are, in turn, read and parsed
by the On-Chip Boot Rom during booting.

.DXE
File

Loader Utility
(elfloader.exe)

.LDR
File

10-Byte Header for Block 1

10-Byte Header for Block 2

10-Byte Header for Block 3

10-Byte Header for Block n

Block 1

Block 2

Block 3

……………..

9

15-9 a

Boot SequenceBoot Sequence Prom/Flash Or SPI Device

Block n

10-Byte Header for Block 1

10-Byte Header for Block 2

10-Byte Header for Block 3

10-Byte Header for Block n

Block 1

Block 2

Block 3

……………..

On-Chip
Boot ROM

On-Chip
Boot ROM

0xEF00 0000

L1 Memory

BlackFin - BF531/BF532/BF533
SDRAM

Block 2

Block 1

Block 3

10

15-10 a

Header InformationHeader Information

• The elfloader utility converts the input .DXE file into various blocks.
Each block is preceded by a 10-byte header:
− Address (4 bytes) – where the block resides within memory
− Count (4 bytes) – how many bytes to boot in
− Flag (2 bytes) – information about the block:

11

15-11 a

Flag InformationFlag Information
• ZEROFILL Block

− indicates that the block is a buffer with zeros.
− Zero Block is not included within loader file.

• RESVCT (Reset Vector)
− Identifies the processor (0 for ADSP-BF532/1, 1 for ADSP-BF533)

• Boot ROM jumps to start of L1 Instruction Memory after booting
• INIT (Initialization) Block

− Block of code (i.e. subroutine) which executes before the actual application code
boots over it.
• When the On-Chip Boot Rom detects an Init Block, it boots the block into internal

memory and makes a CALL to it. After the initialization code is executed, it gets
overwritten with application code.

• IGNORE Block
− Indicates a block that is not booted into memory.

• Currently not implemented for application code.
• FINAL Block

− Indicates boot process is complete after this block.
− On-Chip Boot Rom jumps to the start of L1 memory for application code execution.

The processor is left in Supervisor Mode (at IVG15).
• PFLAG

− 4 bit code indicates which PFx to use for handshake during SPI slave boot.

12

15-12 a

Initialization Block Execution

On-Chip
Boot ROM

On-Chip
Boot ROM

0xEF00 0000

L1 Memory

BlackFin - BF531/BF532/BF533
SDRAM

Prom/Flash Or SPI Device

Block n

Header for Init Block

Header for L1 Block

Header for SDRAM Block

10-Byte Header for Block n

Init Block

L1 Block

SDRAM Block

……………..

Init Block

13

15-13 a

Initialization Block Execution (cont.)

On-Chip
Boot ROM

On-Chip
Boot ROM

0xEF00 0000

L1 Memory

BlackFin - BF531/BF532/BF533
SDRAM

Prom/Flash Or SPI Device

Block n

Header for Init Block

Header for L1 Block

Header for SDRAM Block

10-Byte Header for Block n

Init Block

L1 Block

SDRAM Block

……………..

SDRAM Block

Init Block
L1 Block

14

15-14 a

/***/
/* This file contains 3 sections: */
/* 1) A Pre-Init Section - this section saves off all the registers of the DSP onto the stack. */
/* 2) A Init Code Section - this section is the customer initialization code which can be modified by the */
/* customer. As an example, an SDRAM initialization code is supplied. */
/* 3) A Post-Init Section - this section restores all the register from the stack. Customers should not */
/* modify the Pre-Init and Post-Init Sections. The Init Code Section can be modified for */
/* application use. */
/***/

#include <defBF532.h>

.section program;

/*******Pre-Init Section***/
[--SP] = ASTAT; // The Stack Pointer, SP, is set to the end of
[--SP] = RETS; // scratchpad memory (0xFFB00FFC)
[--SP] = (r7:0); // by the On-Chip Boot Rom
[--SP] = (p5:0);
[--SP] = I0; [--SP] = I1; [--SP] = I2; [--SP] = I3;
[--SP] = B0; [--SP] = B1; [--SP] = B2; [--SP] = B3;
[--SP] = M0;[--SP] = M1;[--SP] = M2;[--SP] = M3;
[--SP] = L0; [--SP] = L1; [--SP] = L2; [--SP] = L3;

/***/

Initialization Code Example (Init Block)Initialization Code Example (Init Block)

15

15-15 a

/*******Init Code Section**/

/**Please insert Initialization code in this section************/

/*******SDRAM Setup************/
Setup_SDRAM:

P0.L = EBIU_SDRRC & 0xFFFF;
P0.H = (EBIU_SDRRC >> 16) & 0xFFFF; //SDRAM Refresh Rate Control Register
R0 = 0x074A(Z);
W[P0] = R0;

SSYNC;

P0.L = EBIU_SDBCTL & 0xFFFF;
P0.H = (EBIU_SDBCTL >> 16) & 0xFFFF; //SDRAM Memory Bank Control Register
R0 = 0x0001(Z);
W[P0] = R0;
SSYNC;

P0.L = EBIU_SDGCTL & 0xFFFF;
P0.H = (EBIU_SDGCTL >> 16) & 0xFFFF; //SDRAM Memory Global Control Register
R0.L = 0x998D;
R0.H = 0x0091;
[P0] = R0;
SSYNC;

/******************************/

Initialization Code Example (cont.)

16

15-16 a

/*******Post-Init Section**/
L3 = [SP++]; L2 = [SP++]; L1 = [SP++]; L0 = [SP++];
M3 = [SP++]; M2 = [SP++]; M1 = [SP++]; M0 = [SP++];
B3 = [SP++]; B2 = [SP++]; B1 = [SP++]; B0 = [SP++];
I3 = [SP++]; I2 = [SP++]; I1 = [SP++]; I0 = [SP++];
(p5:0) = [SP++];
(r7:0) = [SP++];
RETS = [SP++];
ASTAT = [SP++];

/**/

RTS;

Initialization Code Example (cont.)

17

15-17 a

MultiMulti--Application Boot OptionApplication Boot Option

• With the ADSP-BF531/2/3 loader file structure and
the Rev. 0.1 silicon and higher, it is possible to
boot in multiple DXE applications into the
processor. Each DXE is preceded by a 4-Byte DXE
count header which is the number of bytes within
the DXE including headers. With this information,
a user can chose a specific DXE to boot into the
processor from external memory.

• Note: The 4-Byte DXE Count Block is
encapsulated within a 10-byte header to be
compatible with the Rev. 0.0 Silicon.

10-Byte Header for Count

……………..
4-Byte Count for 4th DXE

……………..

10-Byte Header for Count
4-Byte Count for 1st DXE

1st DXE Application

10-Byte Header for Count
4-Byte Count for 2nd DXE

2nd DXE Application

10-Byte Header for Count
4-Byte Count for 3rd DXE

3rd DXE Application

10-Byte Header for Block 1

10-Byte Header for Block 2

10-Byte Header for Block 3

Block 1

Block 2

Block 3
……………..

18

15-18 a

How to Boot in Multiple Application How to Boot in Multiple Application DXEsDXEs

1. Use the 2nd Stage Loader option (-l
2ndStageLoaderName.dxe). This option
allows you to use a custom 2nd Stage
Loader (not included) to boot in specific
DXEs from external memory.

− After the the 2nd Stage Loader gets booted
into internal memory via the On-Chip Boot
Rom, it has full control of the boot process.
It can use the DXE byte counts to boot in
specific DXEs from external memory.

10-Byte Header for Count

……………..
4-Byte Count for 3rd DXE

……………..

10-Byte Header for Count
Count for 2nd Stage Loader

2nd Stage Loader

10-Byte Header for Count
4-Byte Count for 1st DXE

1st DXE Application

10-Byte Header for Count
4-Byte Count for 2nd DXE

2nd DXE Application

19

15-19 a

How to Boot in Multiple Application How to Boot in Multiple Application DXEsDXEs
2. Use the Initialization Block option (-init

InitBlock.dxe). This option allows you to change
the external memory pointer and boot in a
specific DXE via the On-Chip Boot Rom.

− R0 and R3 are used as external memory pointers
by the On-Chip Boot Rom. R0 is for Flash/Prom
Boot and R3 is for SPI Memory Boot.

− Within the Init Block code, change the value of R0
for Flash/Prom Boot or R3 for SPI boot to point to
the external memory location of where the specific
application DXE starts. After the processor returns
from the Init Block code to the On-Chip Boot Rom,
the On-Chip Boot Rom will continue to boot in
bytes from the location specified in the R0 or R3
register.

Note: This option requires that the user know the
starting locations of specific DXEs within
external memory. R0 or R3 must point to the 10-
byte Count Header as indicated on the figure.

10-Byte Header for Count

……………..
4-Byte Count for 3rd DXE

……………..

10-Byte Header for Count
Count for Init Block

Initialization Block

10-Byte Header for Count
4-Byte Count for 1st DXE

1st DXE Application

10-Byte Header for Count
4-Byte Count for 2nd DXE

2nd DXE Application

20

15-20 a

#include <defBF532.h>
.section program;
/*******Pre-Init Section***/
/***/
/*******Init Code Section**/
R0.H = High Address of DXE Location (R0 for Flash/Prom Boot; R3 for SPI boot)
R0.L = Low Address of DXE Location. (R0 for Flash/Prom Boot; R3 for SPI boot)
/**/
/*******Post-Init Section**/
/**/

RTS;

Initialization Code for Multi-Application Boot

21

15-21 a

Supported Boot MemoriesSupported Boot Memories

• On-Chip Boot Rom Allows Booting To All Memory Ranges*:
− L1 Memory

• ADSP-BF531
− Data Bank A SRAM (0xFF80 4000 – 0xFF80 7FFF)
− Instruction SRAM (0xFFA0 8000 – FFA0 BFFF)

• ADSP-BF532
− Data Bank A SRAM (0xFF80 4000 – 0xFF80 7FFF)
− Data Bank B SRAM (0xFF90 4000 – 0xFF90 7FFF)
− Instruction SRAM (0xFFA0 8000 – FFA1 3FFF)

• ADSP-BF533
− Data Bank A SRAM (0xFF80 0000 – 0xFF80 7FFF)
− Data Bank B SRAM (0xFF90 0000 – 0xFF90 7FFF)
− Instruction SRAM (0xFFA0 0000 – FFA1 3FFF)

− SDRAM
• Bank 0 (0x0000 0000 – 0x07FF FFFF)

*NOTE: Booting to Scratchpad Memory (0xFFB0 0000) is not supported.

22

15-22 a

Creating a Loader FileCreating a Loader File

• Using the Loader Property Page under Project Options

23

15-23 a

Creating a Bypass Mode FileCreating a Bypass Mode File

• The Mask Address field masks
all EPROM/Flash address bits
above or equal to the number
specified. For example, Mask
Address = 29 masks all the bits
above and including A29
(ANDed by 0x1FFF FFFF). For
example, 0x2000 0000 becomes
0x0000 0000. The valid #s are
integers 0 through 32.

For 16-bit External Execution (BMODE = 00)

NOTE: The ROM splitter only processes ROM sections. Segments should be
declared as ‘ROM’ within the .LDF file.

