Section 12

External Bus Interface Unit (EBIU)

BF533 EBIU Overview

- Provides a glueless interface to external synchronous and asynchronous memories.
 - On-chip SDRAM controller (SDC) supports PC-100 and PC-133 SDRAM
- Asynchronous Memory Controller (AMC) and Synchronous DRAM Controller (SDC) arbitrate for internal bus resources and shared external pin resources.
- EBIU runs at the system clock rate (SCLK).
 - All synchronous memories interfaced to the BF533 operate at this frequency.
- SDC and AMC both support 16-bit accesses
 - True 8-bit read accesses are supported on SDC only

Bus Interfaces to EBIU

- Three internal 16-bit busses are connected to the EBIU:
 - External Access Bus (EAB): Mastered by the core memory management unit to access external memory
 - Peripheral Access Bus (PAB): Used to provide access to EBIU MMRs
 - DMA External Bus (DEB): Mastered by the DMA controller to access external memory
- External Port Bus (EPB) connects the output of EBIU to external devices
- Transactions from the core have priority over DMA accesses unless the DMA detects an urgent condition (e.g. peripheral FIFO filling up)
- Packing modes are available for DMA transfers
 - 16-bit transfers make the most efficient use of the DMA buses

Shared Memory Interface Pins

- The AMC and SDC share the following external pins:
 - DATA[15:0], data bus
 - ADDR[19:1], address bus
 - /ABE [1:0]/SDQM[1:0], AMC byte enables/SDC data masks
 - /BR, /BG, /BGH

Asynchronous Memory Controller

Asynchronous Memory Controller Features

- Supports up to 4 MB of addressable memory comprised of four 1MB banks.
- Each 1MB asynchronous memory bank has its own memory select signal
 - /AMS0, /AMS1, /AMS2, /AMS3
- EBIU supports 16-bit accesses
 - True byte accesses not supported because EBIU always fetches 16-bits
 - Core will return upper or lower byte as needed using instruction of the form R0 = B[P0];
 - Booting option does exist from 8-bit flash
 - Performed by making 16-bit access and using least significant 8 bits
- Memory bank(s) must be enabled in the EBIU_AMGCTL register if a device is present
- Glueless interface to SRAM, flash
 - Can also be used to map peripherals (A/D's, Video decoders, etc)

Interface Signals Unique to Asynchronous Memory

EBIU Pin Name	Pin Type	Description
ADDR[19:1]	0	External Address Bus
DATA[15:0]	I/O	External Data Bus
AMS[3:0]	0	Asynchronous Memory Selects
AWE	0	Asynchronous Memory Write Enable
ARE	0	Asynchronous Memory Read Enable
AOE	0	Asynchronous Memory Read Enable
ARDY	I	Asynchronous Memory Ready Response
ABE[1:0]	0	Byte Enables

Pin Types: I = Input, O = Output, I/O = Input/Output

ABE Signals /ABE0 and /ABE1 are byte enable signals that allow byte writes to 16-bit memory They do not function as an address 0 pin If an 8-bit flash is used, the max bank size is 512KB /ABE0 and /ABE1 are both low during read operations /ABE0 is low and /ABE1 is high during a write to the lower byte of 16-bit ASYNC memory /ABE0 is high and /ABE1 is low during a write to the upper byte of 16-bit ASYNC memory

16-bit SRAM Interface Example

AMC Control Registers

- Asynchronous Memory Global Control Register (EBIU_AMGCTL)
 - Enable/disable CLKOUT signal (SCLK)
 - All banks enabled/disabled, bank 0 enabled only, bank 0 and 1 enabled only, banks 0 & 1, 2 enabled only.
- Asynchronous Memory Bank Control Registers (EBIU_AMBCTL0, EBIU_AMBCTL1)
 - Define wait states, ARDY enable/disable, and setup and hold times for each asynchronous memory bank.

Asynchronous Memory Global Control Register (EBIU_AMGCTL)

Asynchronous Memory Bank Control Register 1 of 3

- The Asynchronous Memory Controller has two memory bank control registers that control the following parameters:
 - Setup:
 - The time between the beginning of a memory cycle and the assertion of the read or write enable.
 - Read Access:
 - The time between the read enable assertion and negation.
 - Write Access:
 - The time between write enable assertion and negation.
 - Hold:
 - The time between read or write enable negation and the end of the memory cycle.
- Each of these parameters can be programmed in terms of duration of EBIU clock cycles (SCLK).
- Additional wait states can be added via the ARDY pin.
 - ARDY sampled on the clock cycle before the end of the programmed strobe period.

Asynchronous Memory Bank Control Register 2 of 3

Asynchronous Memory Bank Control Register 3 of 3

Asynchronous Memory Read Timing Example

Asynchronous Memory Write Timing Example

Synchronous DRAM Controller

SDC Features

- SDC supports one bank of standard SDRAMs of 64Mbit, 128Mbit, 256Mbit, and 512Mbit with configurations x4, x8, and x16.
 - Access up to 128MB of memory.
- Provides a programmable refresh counter.
- Supports self refresh mode.
- Provides two SDRAM power-up options.
- Allows up to 4 SDRAM pages to be open at any one time
 - Open SDRAM internal pages reduce the number of page refreshes when multiple accesses are ongoing
 - Greatly improves performance

Interface Signals Unique to Synchronous

Memory

EBIU Pin Name	Pin Type	Description
ADDR[19:18], ADDR[16:1]	0	External Address Bus. (Bank address is output on ADDR[19:18]; connect to SDRAM's BA[1:0] pins.)
DATA[15:0]	I/O	External Data Bus.
SRAS	0	SDRAM Row Address Strobe. (Connect to SDRAM's RAS pin.)
SCAS	0	SDRAM Column Address Strobe. (Connect to SDRAM's CAS pin.)
SWE	0	SDRAM Write Enable pin. (Connect to SDRAM's WE pin.)
SDQM[1:0]	0	SDRAM Data Mask pins. (Connect to SDRAM's DQM pins.)
SMS	0	Memory select pin of external memory bank configured for SDRAM.
SA10	0	SDRAM A10 pin. (Used for SDRAM refreshes; connect to SDRAM's A[10] pin.)
SCKE	0	SDRAM Clock Enable pin. (Connect to SDRAM's CKE pin.)
CLKOUT	0	SDRAM Clock pin. (Connect to SDRAM's CLK pin. Operates at SCLK frequency.)

16MB SDRAM System Example

Figure 17-14. 16 MB SDRAM System Example

Internal Address Mapping (16 Bit Config)

-5		(MI				Page	
Bank Wid (bits)	Bank Size (Mbyte)	Col. Addr. Width (C/	Page Size (kbyte)	Bank Address	Row Address	Column Address	Byte Address
16	128	11	4	IA26—25	IA24—12	A11—1	IA0
16	128	10	2	IA26—25	IA24—11	IA10—1	IA0
16	128	9	1	1A26—25	IA24—10	IA9—1	IA0
16	128	8	.5	IA26—25	IA24—9	IA8—1	IA0
16	64	11	4	IA25—24	IA23—12	IA11—1	IA0
16	64	10	2	IA25—24	IA23—11	IA10—1	IA0
16	64	9	1	IA25—24	IA23—10	IA9—1	IA0
16	64	8	.5	IA25—24	IA23—9	IA8—1	IA0
16	32	11	4	IA24—23	IA22—12	IA11—1	IA0
16	32	10	2	IA24—23	IA22—11	IA10—1	IA0
16	32	9	1	IA24—23	IA22—10	IA9—1	IA0
16	32	8	.5	IA24—23	IA22—9	IA8—1	IA0
16	16	11	4	IA23—22	IA21—12	IA11—1	IA0
16	16	10	2	IA23—22	IA21—11	IA10—1	IA0
16	16	9	1	IA23—22	IA21—10	IA9—1	IA0
16	16	8	.5	IA23—22	IA21—9	IA8—1	IA0

SDRAM Data Mask (SDQM[1:0]) Encoding

- During write transfers to SDRAM the SDQM[1:0] pins are used to mask writes to bytes that are not accessed.
- During read transfers to SDRAM banks, reads are always done for all bytes in the bank regardless of the transfer size.
 - For 16-bit SDRAM accesses SDQM[1:0] = 0,

Internal	Internal Transfer Size			
Address IA[0]	byte	halfword	word	
0	SDQM[1]=1 SDQM[0]=0	SDQM[1]=0 SDQM[0]=0	SDQM[1]=0 SDQM[0]=0	
1	SDQM[1]=0 SDQM[0]=1			

16-bit SDRAM

SDRAM Memory Global Control Register (EBIU SDGCTL)

SDRAM Memory Bank Control Register (EBIU_SDBCTL)

SDRAM Memory Bank Control Register (EBIU_SDBCTL)

Figure 17-16. SDRAM Memory Bank Control Register

SDRAM Control Status Register (EBIU_SDSTAT)

SDRAM Refresh Rate Control Register (EBIU_SDRRC)

SDRAM Refresh Rate Control Register (EBIU_SDRRC)

To calculate the value that should be written to the EB1U_SDRRC register, use the following equation:

```
\texttt{RDIV} = ((f_{SCLK} \times t_{REF}) / NRA) - (t_{RAS} + t_{RP})
```

Where:

- f_{SCLK} = SELK frequency (system clock frequency).
- t_{REF} = SDRAM refresh period.
- NRA = Number of row addresses in SDRAM (refresh cycles to refresh whole SDRAM).
- t_{RAS} = Active to Precharge time (TRAS in the SDRAM Memory Global Control register) in number of clock cycles.
- t_{RP} = RAS to Precharge time (TRP in the SDRAM Memory Global Control register) in number of clock cycles.

Bus Grant/ Bus Request

Bus Request and Grant

- Processor tri-states the memory interface to allow an external controller access to ASYNC or synch memory banks
 - The sequence starts when the external device asserts /BR
 - If no internal request is pending, the processor tri-states the data, control and address lines of the async memory
 - The synchronous interface is optionally tri-stated
 - At this point, /BG is asserted by the core
 - Once the bus has been granted, the processor asserts /BGH when it is ready to access external memory but it is being held off
 - When the external device releases /BR, the processor de-asserts /BG
- Note: the processor will stall if an internal core access is required to the external bus when the bus has been granted

Ideal memDMA EBIU System Throughput *

Source	Destination	Approximate SCLKS for N Words
16-bit SDRAM	L1 Data Memory	N+14
L1 Data Memory	16-bit SDRAM	N+11
16-bit ASYNC Memory	L1 Data Memory	XN+12
L1 Data Memory	16-bit ASYNC Memory	XN+9
16-bit SDRAM	16-bit SDRAM	10+(17*N/7)
16-bit ASYNC Memory	16-bit ASYNC Memory	10+2XN

2 < X = # of (wait states + setup + hold time)

* Measured numbers may be slightly higher on hardware

Core SDRAM Accesses

- Even though the EBIU bus width is 16-bits,
 - A 32-bit core access of the form:

R0 = [P0]; // load from SDRAM memory takes 10 SCLKs

Will be more efficient than two 16-bit core accesses of the form: R0 = w[P0++]; // load from SDRAM memory takes 9 SCLKS R0 = w[P0++]; // load from SDRAM memory takes 9 SCLKS

This is due to the fact that it is more efficient to have the core make one EBIU request vs. two EBIU requests

