
C Run-Time Model and Environment

1-144 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Register Classification
This section describes the ADSP-218x registers. Registers are listed in
order of preferred allocation by the compiler.

Callee Preserved Registers (�Preserved�)

Registers I2, I3, I5, 17, and M0 are preserved. A subroutine which uses any
of these registers must save (preserve) and restore it.

Dedicated Registers

Certain registers have dedicated purposes and are not used for other
things. Compiled code and libraries expect the dedicated registers to be
correct.

Caller Save Registers (�Scratch�)

All registers not preserved or dedicated are scratch registers. A subroutine
may use a scratch register without having to save it.

Circular Buffer Length Registers

Registers L0 through L7 are the circular buffer length registers. The com-
piler assumes that these registers contain zero, which disables circular
buffering; they must be set to zero when compiled code is executing, to
avoid incorrect behavior. There is no restriction on the value of an L regis-
ter when the corresponding I register has been reserved from compiler use.

See “-reserve register[,register...]” on page 1-38 for more information
about reserving registers.

VisualDSP++ 3.5 C Compiler and Library Manual 1-145
for ADSP-218x DSPs

Compiler

Mode Status (MSTAT) Register

The C runtime initializes the MSTAT register as part of the run-time header
code. The compiler and run-time libraries assume to be running in these
preset modes. If you change any of the modes listed in Table 1-9, ensure
that they are reverted before calling C compiled functions or functions
from the C run-time library. Failure to revert to the default modes may
cause applications to fail when running.

Complete List of Registers
The following tables describe all of the registers for the ADSP-218x DSPs.

• Table 1-10 lists the data register’s file registers

• Table 1-11 lists the DAG1 registers

• Table 1-12 lists the DAG2 registers

Table 1-9. MSTAT Register Modes

Mode Description State

SEC_REG Secondary Data Registers disabled

BIT_REV Bit-reversed address output disabled

AR_SAT ALU saturation mode disabled

M_MODE MAC result mode Integer Mode, 16.0
format

Table 1-10. Data Register File Registers

Register Descriptuon Notes

AX0 scratch

AX1 scratch; single-word return

AY0 scratch

C Run-Time Model and Environment

1-146 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

AY1 scratch Argument 2 for compatibility call

AR scratch; Argument 1 for compatibility call

AF scratch

MX0 scratch

MX1 scratch

MY0 scratch

MY1 scratch

MR1:0 scratch

MR2 scratch

MF scratch

SB scratch

SE scratch

SI scratch

SR1:0 scratch; double-word return

Table 1-11. DAG1 Registers

Register Descriptuon

I0 scratch

I1 scratch

I2 preserved

I3 preserved

Table 1-10. Data Register File Registers (Cont’d)

Register Descriptuon Notes

VisualDSP++ 3.5 C Compiler and Library Manual 1-147
for ADSP-218x DSPs

Compiler

M0 preserved

M1 dedicated: +1

M2 dedicated: 0

M3 scratch

L0-3 not used, must be zero

Table 1-12. List of DAG2 Registers

Register Descriptuon

I4 dedicated: SP

I5 preserved

I6 scratch

I7 preserved

M4 dedicated: FP

M5 scratch

M6 dedicated: 0

M7 dedicated: -1

L4-7 not used, must be zero

Table 1-11. DAG1 Registers

Register Descriptuon

C and Assembly Language Interface

1-148 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

C and Assembly Language Interface
This section describes how to call assembly language subroutines from
within C programs, and how to call C functions from within assembly
language programs. Before attempting to do either of these, be sure to
familiarize yourself with the information about the C run-time model
(including details about the stack, data types, and how arguments are han-
dled) in “C Run-Time Model and Environment” on page 1-132.

This section contains:

• “Calling Assembly Subroutines from C Programs”

• “Calling C Routines from Assemby Programs” on page 1-151

• “Using Mixed C/Assembly Naming Conventions” on page 1-155

• “Compatibility Call” on page 1-156

Calling Assembly Subroutines from C Programs
Before calling an assembly language subroutine from a C program, create a
prototype to define the arguments for the assembly language subroutine
and the interface from the C program to the assembly language subrou-
tine. Even though it is legal to use a function without a prototype in C,
prototypes are a strongly recommended practice for good software engi-
neering. When the prototype is omitted, the compiler cannot perform
argument type checking and assumes that the return value is of type inte-
ger and uses K&R promotion rules instead of ANSI promotion rules.

The run-time model defines some registers as scratch registers and others
as preserved or dedicated registers. Scratch registers can be used within the
assembly language program without worrying about their previous con-
tents. If more room is needed (or an existing code is used) and you wish to
use the preserved registers, you must save their contents and then restore
those contents before returning.

VisualDSP++ 3.5 C Compiler and Library Manual 1-149
for ADSP-218x DSPs

Compiler

In general, you should perform the following steps when writing C-call-
able assembly subroutines:

• Familiarize yourself with the general features of the C run-time
model. This should include the general notion of a stack, how
arguments are handled, and also the various data types and their
sizes.

• Create an interface definition, or “prototype”, so that the C pro-
gram knows the name of your function and the types of its
arguments. The prototype also determines how the arguments are
passed.

In C mode, the compiler allows you to use a function without a
prototype. In this case, the compiler assumes that all the argu-
ments, as they appear in the call, are of the proper type even
though this may not be desired. The compiler also assumes that the
return type is integer.

• The compiler normally prefaces the name of external entry points
with an underscore. You can simply declare the function with an
underscore as the compiler does. When using the function from
assembly programs, you might want your function’s name to be
just as you write it. Then you will also need to tell the C compiler
that it is an asm function, by placing 'extern "asm" {}' around
the prototype.

• The C run time determines that all function parameters are passed
on the stack. A good way to observe and understand how argu-
ments are passed is to write a dummy function in C and compile it
using the -save-temps command-line switch (on page 1-39). The
resulting compiler generated assembly file (.s) can then be viewed.

C and Assembly Language Interface

1-150 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

The following example includes the global volatile variable assign-
ments to indicate where the arguments can be found upon entry to
asmfunc.

// Sample file for exploring compiler interface...
// global variables assign arguments there just so
// we can track which registers were used
// (type of each variable corresponds to one of arguments)

int global_a;
float global_b;
int * global_p;

// the function itself

int asmfunc(int a, float b, int * p, int d, int e) {
// do some assignments so that .s file will show where args are

global_a = a;
global_b = b;
global_p = p;
//value gets loaded into the return register
return 12345;

}

When compiled with the -save-temps option set (see on page 1-39), this
produces the following:

// PROCEDURE: _asmfunc

.global _asmfunc;

_asmfunc:

SI = DM(I4 + 4);

I0 = SI ;

AX1 = DM(I4 + 2);

SI = DM(I4 + 1);

AX0 = DM(I4 + 3);

DM(_global_b) = AX1;

DM(_global_a) = SI;

DM(_global_b+1) = AX0;

VisualDSP++ 3.5 C Compiler and Library Manual 1-151
for ADSP-218x DSPs

Compiler

RTS (DB);

AX1 = 12345;

DM(_global_p) = I0;

_asmfunc.end

� For a more complicated function, you might find it useful to fol-
low the general run-time model, and use the run-time stack for
local storage, etc. A simple C program, passed through the com-
piler, will provide a good template to build on. Alternatively, you
may find it just as convenient to use local static storage for
temporaries.

Calling C Routines from Assemby Programs
You may want to call a C-callable library and other functions from within
an assembly language program. As discussed in “Calling Assembly Subrou-
tines from C Programs” on page 1-148, you may want to create a test
function to do this in C, and then use the code generated by the compiler
as a reference when creating your assembly language program and the
argument setup. Using volatile global variables may help clarify the essen-
tial code in your test function.

The run-time model defines some registers as scratch registers and others
as preserved or dedicated. The contents of the scratch registers may be
changed without warning by the called C function. If the assembly lan-
guage program needs the contents of any of those registers, you must save
their contents before the call to the C function and then restore those con-
tents after returning from the call.

Do not use the dedicated registers for other than their intended purpose;
the compiler, libraries, debugger, and interrupt routines all depend on
having a stack available as defined by those registers.

Preserved registers can be used; their contents will not be changed by call-
ing a C function. The function will always save and restore the contents of
preserved registers if they are going to change.

C and Assembly Language Interface

1-152 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

If arguments are on the stack, they are addressed via an offset from the
stack pointer or frame pointer. Explore how arguments are passed between
an assembly language program and a function by writing a dummy func-
tion in C and compiling it with the save temporary files option (the
-save-temps switch on page 1-39). By examining the contents of volatile
global variables in *.s file, you can determine how the C function passes
arguments, and then duplicate that argument setup process in the assem-
bly language program.

The stack must be set up correctly before calling a C-callable function. If
you call other functions, maintaining the basic stack model also facilitates
the use of the debugger. The easiest way to do this is to define a C main
program to initialize the run-time system; maintain the stack until it is
needed by the C function being called from the assembly language pro-
gram; and then continue to maintain that stack until it is needed to call
back into C. However, make sure the dedicated registers are correct. You
do not need to set the FP prior to the call; the caller’s FP is never used by
the recipient.

Using Mixed C/Assembly Support Macros

This section describes the C/Assembly interface support macros available
via the asm_sprt.h system header file. Use these macros for interfacing
assembly language modules with C functions.

Your software package includes a version of the asm_sprt.h file.
Table 1-13 lists and the following section describes the macros.

Table 1-13. Interface Support Macros

function_entry exit leaf_entry leaf_exit

alter(x)

save_reg restore_reg readsfirst(x) readsnext

putsfirst putsnext getsfirst(x) getsnext

VisualDSP++ 3.5 C Compiler and Library Manual 1-153
for ADSP-218x DSPs

Compiler

function_entry

The function_entry macro expands into the function prologue for
non-leaf functions. This macro should be the first line of any non-leaf
assembly routine.

exit

The exit macro expands into the function epilogue for non-leaf func-
tions. This macro should be the last line of any non-leaf assembly routine.
Exit is responsible for restoring the caller’s stack and frame pointers and
jumping to the return address.

leaf_entry

The leaf_entry macro expands into the function prologue for leaf func-
tions. This macro should be the first line of any leaf assembly routine.

� This macro is currently null, but should be used for future
compatibility.

leaf_exit

The leaf_exit macro expands into the function epilogue for non-leaf
functions. This macro should be the last line of any leaf assembly routine.
leaf_exit is responsible for restoring the caller’s stack and frame pointers
and jumping to the return address.

alter(x)

The alter macro expands into an instruction that adjusts the stack
pointer by adding the immediate value x. With a positive value for x, alter
pops x words from the top of the stack. You could use alter to clear
x number of parameters off the stack after a call.

C and Assembly Language Interface

1-154 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

save_reg

The preprocessor expands the save_reg macro into a series of assembly
language commands that push the following registers (on the ADSP-218x
architecture) onto the C run-time stack:

 AY0, AX0, AX1, MY0, MX0, MX1, MR1, MR0, SR1, SR0, I0, I1, M0, M3, I5

restore_reg

The restore_reg macro expands into a series of instructions that pop the
stored registers off of the C run-time stack.

readsfirst(register)

The preprocessor expands the readsfirst macro into a series of assembly
language commands that read the value off the top of the stack, write the
value to register, and set up for a read of the next stack entry with the
readsnext macro. The readsfirst macro references the stack-pointer (I4)
and might be used to read values that were placed on the stack using the
putsfirst and putsnext macros.

register = readsnext

The preprocessor expands the readsnext macro into a series of assembly
language commands. These commands continue the read process set up by
the readsfirst macro by reading the next value off the top of the stack
and writing it to register.

putsfirst = register

The preprocessor expands the putsfirst macro into a series of assembly
language commands. These commands write the contents of register to
the top of the stack and set up for a write of the next stack entry with the
putsnext macro.

VisualDSP++ 3.5 C Compiler and Library Manual 1-155
for ADSP-218x DSPs

Compiler

putsnext = register

The preprocessor expands the putsnext macro into a series of assembly
language commands. These commands continue the write process set up
by the putsfirst macro by writing the next register to the top of the
stack.

getsfirst(register)

The preprocessor expands the getsfirst macro into a series of assembly
language commands that read the value off the top of the stack, write the
value to register, and set up for a read of the next stack entry with the
getsnext macro. The preprocessor expands the getsfirst macro into a
series of assembly language instructions that read a value from the top of a
function frame, write the value to register and set up a read of the next
value with getsnext. The getsfirst macro references the frame-pointer
(M4) and would be used to read function parameters.

register = getsnext

The preprocessor expands the getsnext macro into a series of assembly
language commands. These commands continue the read process set up by
the getsfirst macro by reading the next value off the top of the stack and
writing it to register.

Using Mixed C/Assembly Naming Conventions
It is necessary to be able to use C symbols (function or variable names) in
assembly routines and use assembly symbols in C routines. This section
describes how to name C and assembly symbols and how to use C and
assembly symbols.

To name an assembly symbol that corresponds to a C symbol, add an
underscore prefix to the C symbol name when declaring the symbol in
assembly. For example, the C symbol main becomes the assembly symbol
_main.

C and Assembly Language Interface

1-156 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

To use a C function or variable in your assembly routine, declare it as glo-
bal in the C program and import the symbol into the assembly routine by
declaring the symbol with the .EXTERN assembler directive.

To use an assembly function or variable in your C program, declare the
symbol with the .GLOBAL assembler directive in the assembly routine and
import the symbol by declaring the symbol as extern in the C program.

� Alternatively, the cc218x compiler provides an “asm” linkage speci-
fier (used similarly to the “C” linkage specifier of C++), which
when used, removes the need to add an underscore prefix to the
symbol that is defined in assembly.

Table 1-14 shows the C/Assembly interface naming conventions.

Compatibility Call
The cc218x compiler in VisualDSP++ 3.5 produces code that is not fully
compatible with the Release 6.1 run-time model. However, the new com-
piler is superior in many ways to the old one, and your programs will be
faster, smaller, and more reliable after the C code is converted to the new
system.

Table 1-14. Naming Conventions for Symbols

In The C Program In The Assembly Subroutine

int c_var;
/* declared global */

.extern _c_var;

void c_func(); .extern _c_func;

extern int asm_var; .global _asm_var;

extern void asm_func(); .global _asm_func;
_asm_func:

extern "asm" void asm_func(); .global asm_func;
asm_func:

VisualDSP++ 3.5 C Compiler and Library Manual 1-157
for ADSP-218x DSPs

Compiler

The cc218x compiler provides a compatibility call to enable usage of exist-
ing libraries and special-purpose assembly language subroutines with the
new compiler. This feature is available with a small amount of source code
modification by adding an 'extern "OldAsmCall" ‘ specification to the
prototype in the source program, similar to what is done when calling
between C and C++ source programs. There is no compiler option for
compatibility calls.

This feature provides full compatibility with the following restrictions:

• You cannot mix old and new compiled modules

• Old code is not allowed to call into a new compiled module

• A procedure pointer from a new compiled module is not allowed as
an argument to an old routine

Some programs may not have any declarations of external assembly lan-
guage functions. This is not good programming practice and should be
fixed.

The effect of the OldAsmCall declaration is as follows:

• Pass the first two arguments in registers AR and AY1.

� The C run-time stack for compatibility calls is normally used to
pass the third and subsequent parameters to a called function. This
changes if either of the first two parameters is a multi-word param-
eter, in which case, it and all subsequent parameters are passed on
the stack. Functions that take variable arguments (varargs func-
tions) will have the last named parameter and subsequent
parameters passed on the stack.

• Postpend an underscore onto the external name.

• Look in the AR register (instead of AX1) for a one-word return value.

C and Assembly Language Interface

1-158 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

The OldAsmCall extern declaration can encompass one or more prototypes
that define external entry points, as shown in the following example.

extern "OldAsmCall" {
int libfn(int flag, int * a);
void resetmach(int idle);
}

