
Engineer To Engineer Note EE-192

a

Technical Notes on using Analog Devices' DSP components and development tools
Contact our technical support by phone: (800) ANALOG-D or e-mail: dsp.support@analog.com
Or visit our on-line resources http://www.analog.com/dsp and http://www.analog.com/dsp/EZAnswers

Using C To Create Interrupt-Driven Systems On Blackfin® Processors
Contributed by Joe B. May 28, 2003

Introduction
This Engineer-to-Engineer note will describe the
process for implementing an interrupt-driven
general-purpose timer routine for the Blackfin®
Processor family using the C programming
language.

The referenced code in this application note was
verified using VisualDSP++™ 3.1 for Blackfin
and the project was run on the EZ-KIT Lite™
evaluation systems for both the ADSP-BF535
and the ADSP-BF533 Blackfin Processors
(ADDS-BF535-EZLITE, Rev 1.0 and ADDS-
BF533-EZLITE, Rev 1.0).

Timer Programming Model
When coding in a pure assembly environment,
configuration of the timers and use of interrupts
is fairly straightforward, as described in the
Hardware Reference Manuals. However, when
programming in C, using interrupts and
accessing the timer registers requires knowledge
of some of the system header files and an
understanding of the C run-time environment as
it relates to embedded system programming. The
process explained herein describes how to
implement an interrupt-driven timer routine in C,
but the methods employed can be applied to any
C-coded interrupt routines for the Blackfin
processors.

Two test platforms are necessary for this paper
because the demonstration utilizes the on-board
LEDs on the Blackfin evaluation platforms. On

the ADDS-BF535-EZKIT, the four LEDs are
mapped directly to the general purpose flag pins,
whereas, on the ADDS-BF533-EZKIT, the six
LEDs are accessible only through the on-board
flash port, which requires an alternate set of
instructions in the Interrupt Service Routine
(ISR) in order to update the LED display. The
differences in the software will be discussed
later.

Using Features In VisualDSP++
VisualDSP++ 3.1 comes with a set of header
files that makes programming the Blackfin
processors in a C environment simpler. These
headers can be found under the Blackfin include
directory and are named using the “cdef” prefix
to denote C definitions.

Memory-mapped registers are accessed in C via
a referencing-dereferencing scheme using casted
pointers, like this:
volatile long *pIMASK = (long *)IMASK;

IMASK is defined for the ADSP-BF535 in
“defblackfin.h” and for the ADSP-BF533 in
“def_LPblackfin.h” to be the address of the
IMASK register in Blackfin address space
(0xFFE02104). If the user wanted to set bit 0 of
the IMASK register in C, a proper 32-bit read-
modify-write would be performed indirectly
through the pointer defined above:

*pIMASK |= 0x1;

Using this convention, the label “pIMASK” is a
data element of type long int *, which

Copyright 2003, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of
customers’ products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property
of their respective holders. Information furnished by Analog Devices Applications and Development Tools Engineers is believed to be accurate and reliable, however
no responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices’ Engineer-to-Engineer Notes.

 a
consumes 4 bytes of memory and whose sole
purpose is to hold the address of IMASK so that
the user can indirectly write a 1 to the register by
accessing it through its mapped address. This
convention wastes 4 bytes of memory for every
register accessed in this fashion!

An alternate method of manipulating the IMASK
register without consuming memory for the
pointer is to force a casted pointer in the code to
modify the address directly:

*(volatile long *)IMASK |= 0x1;

In the Blackfin C-defines header files, all of the
memory-mapped registers have already been set
up for access in C in a series of #define
statements, like this:

#define pIMASK ((volatile long *)IMASK)

This method allows the user to use the same C
syntax in their code, *pIMASK |= 0x1, to modify
the register’s contents without dedicating
memory for the pointer. Instead, the compiler’s
pre-processor substitutes the casted pointer
syntax for what appears to be pointer-modifying
code. So, if one knows the name of the register,
one can easily access that register using standard
C code for pointer modification:

*pREGISTER_NAME = VALUE;

These “cdef” header files were created for each
individual processor based upon the widths of
the registers being represented (i.e., a 16-bit
register uses the short int type, which the
Blackfin compiler treats as 16-bit data, whereas a
32-bit register is represented as a long int or int
type).

Blackfin Interrupts (Hardware)
The Blackfin family of processors has an
intricate interrupt system that includes core
interrupts, enabled in the IMASK register, and
peripheral interrupts, which are configured in the
System Interrupt Controller (SIC). These
system-level peripheral interrupts are optionally
user-configurable in a set of System Interrupt
Assignment Registers: SIC_IAR0, SIC_IAR1,

and SIC_IAR2. Refer to Chapter 4 (Program
Sequencer) of the appropriate Hardware
Reference Manual (either ADSP-BF535 or
ADSP-BF533) for more information regarding
interrupt priority assignments.

Several peripheral sources can share the same
SIC interrupt assignment. Those sources with
common interrupt assignments share the same
General-purpose interrupt (IVGx). Table 4-8 of
the Hardware Reference Manual depicts the
“IVG-Select Definitions”, which is where the
values programmed into the specific fields of the
SIC_IARx registers are translated into an IVG
priority. Use the IVG priority detailed here to
determine which IMASK bit to set in the Core
Event Controller (CEC) to enable interrupt
handling for this group of peripherals.

In addition to having a group of interrupt sources
enabled in the CEC, handling for each source’s
individual interrupt is enabled separately on the
SIC level in the SIC_IMASK register. For
example, one could set each peripheral’s IVG
priority to the same level, thus making one group
of 24 potential interrupt sources. If only one of
those peripheral interrupts is enabled in
SIC_IMASK, then the IVG effectively describes
that single interrupt source because that single
source is the only source enabled at the SIC level
to be recognized by the core as a peripheral
interrupt source.

An abridged overview of how to set peripheral
interrupts up correctly goes like this:

1. Enable peripheral’s individual interrupt in
SIC_IMASK register.

2. Program the interrupt priority levels into the
SIC_IARx registers. This step is optional.

3. Use the values in the SIC_IARx registers
with Table 4-8 of the Hardware Reference
Manual to determine which interrupt group
(IVGx) the peripheral of interest is assigned
to.

4. Set the appropriate IVGx bit in the IMASK
register.

Using C To Create Interrupt-Driven Systems On Blackfin® Processors (EE-192) Page 2 of 9

 a
This example uses the interrupt of the General
Purpose Timer 0 to generate LED activity on the
evaluation boards. Following the process
detailed above, the first step is to configure the
SIC_IMASK register. The Timer0 interrupt is
enabled in SIC_IMASK by setting either bit 14
(ADSP-BF535) or bit 16 (ADSP-BF533):

*pSIC_IMASK = 0x00004000; // ADSP-BF535

*pSIC_IMASK = 0x00010000; // ADSP-BF533

For 0.x revisions of the ADSP-BF535,
the active low setting is used to enable
interrupts in SIC_IMASK:

*pSIC_IMASK = ~0x00004000;

This anomaly was fixed in revision 1.0 of
the ADSP-BF535 and doesn’t apply to
any other ADSP-BF53x processor.

Once the interrupt is enabled in the SIC, the next
step is to optionally program the interrupt
priority and assign the peripheral interrupt to an
IVG. This example doesn’t reconfigure the
interrupt priorities but uses the default values in
the SIC_IARx registers.

According to the reset values of the SIC_IARx
registers, the default value in the Timer0 field of
SIC_IAR1 is 0x4. Table 4-8 of the Hardware
Reference Manual tells us that the value 0x4
maps to IVG11, therefore, IVG11 is the default
core interrupt channel for the Timer0 interrupt.
So, the last step in setting up peripheral
interrupts in the hardware is to enable IVG11 in
the CEC’s IMASK register.

If this were a Core Timer application, the
steps required to initialize the SIC would
not be needed because the Core Timer
interrupt is a Core Event only.

Once the interrupts are properly configured, the
final step is to have the software in place for
proper interrupt servicing.

Software And Code Flow
The Blackfin processors feature 16 Event Vector
Table (EVT0-15) registers, which hold the vector
addresses of the individual core interrupt
channels. The program will jump to these
addresses whenever an event is latched by ILAT
and enabled in IMASK in the CEC.

In the assembly examples shipped with
VisualDSP++ 3.1, the “startup.asm” driver sets
up a default vector table using the following
assembler commands:
 p0.l = lo(EVT2); p0.h = hi(EVT2);

 r0.l = _NHANDLER; r0.h = _NHANDLER;

 [p0++] = r0; // NMI Handler (Int2)

This code sets up a pointer register (P0) to write
to the EVT2 register and then writes the address
of the _NHANDLER label to EVT2. The result is
that any external Non-Maskable Interrupt (NMI)
detected by the CEC will force an immediate
vector to the address of _NHANDLER, which is the
label associated with the NMI’s ISR.

In C, however, the “startup.asm” is substituted
with the C run-time library. The library function
 register_handler(IVGx, ISR_Name)

assigns the name of the ISR function, ISR_Name,
to the core event represented by IVGx by writing
the ISR function’s address to the corresponding
EVTx register. The function prototype and
enumeration of interrupt kinds can be found in
the “sys\exception.h” header file.

Checking the “sys\exception.h” header file, it can
be seen that the signal number for IVG11 is
ik_ivg11. Therefore, use of this macro in this
example is:

register_handler(ik_ivg11, Timer0_ISR);

In addition to setting the EVT11 register to
contain the address of the Timer0_ISR label, this
macro also sets the IVG11 bit in the IMASK
register and globally enables interrupts.

In addition to registering the interrupt handler,
the interrupt routine itself must also be set-up,

Using C To Create Interrupt-Driven Systems On Blackfin® Processors (EE-192) Page 3 of 9

 a
which is accomplished using a second library
function:

EX_INTERRUPT_HANDLER (ISR_Name)

The EX_INTERRUPT_HANDLER macro can be used in
two ways. It must be used as the function
signature for all ISRs. It generates the label
ISR_Name to be used by the register_handler
function later in the source code. It also tells the
compiler that the module is an ISR, which means
that processor context must be saved and
restored upon entry and exit, respectively, and
that the final instruction in the assembly
produced by the compiler must be a return from
interrupt (RTI;). Basically, the
EX_INTERRUPT_HANDLER macro hides special
compiler pragma directives from the user.

The EX_INTERRUPT_HANDLER macro can also be
globally used as a function prototype if the
register_handler(IVGx, ISR_Name) function is
called before the ISR_Name label is defined.

A compiler error will be generated if the
register_handler function attempts to
use the ISR_Name label as an argument
before the EX_INTERRUPT_HANDLER macro
defines the ISR_Name label. If you get
“undefined label” compiler errors, try
using the EX_INTERRUPT_HANDLER macro to
prototype the ISR globally.

Once the ISR is registered and all the hardware
considerations have been accounted for, the last
thing needed is an appropriate ISR. For
peripheral interrupts, the ISR code must clear the
IRQ in the peripheral’s hardware. In most cases,
this is done by performing a write-one-to-clear
(W1C) operation to the associated IRQ bit. For
the Timer0 peripheral, a 1 must be written to the
TIMIL0 location of the Timer’s Status register in
order to clear the IRQ before the ISR completes
and application code begins running again.

In this example, if the core did not explicitly
clear the IRQ in the Timer0 ISR, the same

interrupt would be immediately latched again
upon completion of the ISR. Even though the
ISR executes, the SIC continues to monitor the
status of the timer’s IRQ, which generated the
event to begin with. If this IRQ remains active,
the SIC will continue to hold the bit in the SIC
Interrupt Status Register (SIC_ISR) active,
which will result in the interrupt staying latched
in the core (ILAT). Once the core executes the
RTI; instruction in the ISR, the IMASK register
is restored and the ISR would be triggered again
because the CEC sees that an enabled interrupt is
currently latched.

If several sources share the same IVG
priority, it is up to the user to implement
a software solution to poll each enabled
peripheral’s IRQ in the group to
determine which source generated the
interrupt request.

The Code Example
The code in Listing 1 at the end of this note was
developed for the ADSP-BF535 EZ-KIT. The
code was then modified to perform the same
functions on the ADSP-BF533 EZ-KIT. The two
critical differences between the two evaluation
platforms are:

1. ADSP-BF533 has a TIMER_ENABLE
register and uses 32-bit timer registers
whereas the ADSP-21535 uses pairs of
registers to represent the upper 16 bits and
lower 16 bits separately

2. ADSP-BF533 EZ-KIT Lite LEDs are
accessed via the on-board flash rather than
the PFx flags, as previously mentioned

In Listing 1, there is a commented pre-processor
directive, #define BF533_PROJECT, at the top of
the code that must be uncommented to build a
project to run on an ADSP-BF533 EZ-KIT Lite.

Using C To Create Interrupt-Driven Systems On Blackfin® Processors (EE-192) Page 4 of 9

 a
Throughout the source code, there are several
pre-processor directives based upon whether or
not BF533_PROJECT is defined. If BF533_PROJECT
is defined, the correct ADSP-BF533 code is built
into the project. Otherwise, the code is built
assuming an ADSP-BF535 project.

This application code initializes Timer0 in
Pulsewidth Modulation (PWMOUT) Mode. It
configures the appropriate LEDs to be outputs,
sets up the timer registers, associates the ISR to
the timer signal, and starts the timer.

The ISR code increments a counter and displays
the counter value in binary on the LEDs. Once
all LEDs are lit, the counter resets to 0. The ISR
also clears the Timer0 interrupt request.

Listing 2 is the C source for the ADSP-BF535
EZ-KIT and Listing 3 is the source code for the
ADSP-BF533 EZ-KIT, without the pre-processor
directives.

mixed.c

/***
 * Uncomment the following pre-processor directive if building code for the *
 * ADSP-BF533 EZ-KIT. ADSP-BF535-EZKIT users do not need to modify this. *
 * Including BF533_PROJECT changes the legacy ADSP-BF535 code to use the *
 * BF533 header, redefine the MAX value on the LEDs, use the BF533 timer *
 * registers, and configure the flash to use the LEDs to output patterns *
 ***/

//#define BF533_PROJECT // Uncomment for BF533-EZKIT Code

#ifdef BF533_PROJECT
 #include <cdefBF533.h> // BF533 Register Pointer Definitions
#else
 #include <cdefBF535.h> // BF535 Register Pointer Definitions
#endif

#include <sys/exception.h> // Interrupt Handling Header

// Prototypes
#ifdef BF533_PROJECT
 void Init_EBIU_Flash(void); // Flash Init Code Needed For BF533-EZKIT
#else
 void Init_Flags(void); // Flags Mapped To LEDs For BF535-EZKIT
#endif

void Init_Timer(void);
void Init_Interrupts(void);

// Selects All LEDs, Also Used For ISR Compare For All LEDs Lit
#ifdef BF533_PROJECT
 #define MAX_LED_DISPLAY 0x3F // 6 LEDs on BF533, all LIT
#else
 #define MAX_LED_DISPLAY 0xF // 4 LEDs on BF535, all LIT
#endif

#ifdef BF533_PROJECT // Flash Register Pointers For Updating BF533 LEDs
 #define pFlashA_PortB_Dir (volatile unsigned char *)0x20270007
 #define pFlashA_PortB_Data (volatile unsigned char *)0x20270005
#endif

Using C To Create Interrupt-Driven Systems On Blackfin® Processors (EE-192) Page 5 of 9

 a
EX_INTERRUPT_HANDLER(Timer_ISR)
{
 static int count=-1;

 if (++count > MAX_LED_DISPLAY) // check for all LEDs lit
 count=0; // clear all LEDs on wrap

 #ifdef BF533_PROJECT
 *pTIMER_STATUS = 1; // Clear Timer0 Interrupt
 *pFlashA_PortB_Data = 0x0; // clear LEDs
 *pFlashA_PortB_Data = count; // write new LED pattern to Port B
 #else
 *pTIMER0_STATUS = 1; // Clear Timer0 Interrupt
 *pFIO_FLAG_C = 0xF; // clear LEDs
 *pFIO_FLAG_S = count; // display new LED pattern
 #endif
} // end Timer_ISR

main()
{
 #ifdef BF533_PROJECT // If this is for the BF533-EZKIT…
 Init_EBIU_Flash(); // initialize EBIU for FLASH interface
 #else // Otherwise, it is for a BF535-EZKIT…
 Init_Flags(); // Set All 4 LED PFx Flags To Outputs
 #endif

 Init_Timer(); // Initialize the Timer0 Registers
 Init_Interrupts(); // Configure the Interrupts

 while(1); // wait forever for interrupts
} // end main

#ifdef BF533_PROJECT
 void Init_EBIU_Flash(void)
 {
 *pEBIU_AMBCTL0 = 0x7bb07bb0;
 *pEBIU_AMBCTL1 = 0x7bb07bb0;
 *pEBIU_AMGCTL = 0x000f;

 *pFlashA_PortB_Dir = MAX_LED_DISPLAY; // 6 LEDs
 } // end Init_EBIU_Flash
#else
 void Init_Flags(void)
 {
 *pFIO_DIR = 0xF; // Configure PF0-3 As Outputs
 } // end Init_Flags
#endif

void Init_Timer(void)
{
 *pTIMER0_CONFIG = 0x0019; // PWM Mode, Period Count,
Interrupt

 #ifdef BF533_PROJECT
 *pTIMER0_PERIOD = 0x01000000; // Configure Timer Period
 *pTIMER0_WIDTH = 0x00800000; // Configure Timer Width
 *pTIMER_ENABLE = 0x0001; // Enable Timer
 #else
 *pTIMER0_PERIOD_HI = 0x0100; // Configure Timer Period

Using C To Create Interrupt-Driven Systems On Blackfin® Processors (EE-192) Page 6 of 9

 a
 *pTIMER0_PERIOD_LO = 0x0000;
 *pTIMER0_WIDTH_HI = 0x0080; // Configure Timer Width
 *pTIMER0_WIDTH_LO = 0x0000;
 *pTIMER0_STATUS = 0x0100; // Enable Timer0
 #endif
} // end Init_Timer

void Init_Interrupts(void)
{
 // Enable the SIC interrupt
#ifdef BF533_PROJECT
 *pSIC_IMASK = 0x00010000; // Timer0 Default IRQ Is Bit 16 on BF533
#else // if using Rev 1.0 or higher of BF535 silicon, delete the ~ below
 *pSIC_IMASK = ~0x00004000; // Timer0 Default IRQ Is Bit 14 on BF535
#endif
 // install the handler (also sets IVG11 in IMASK)
 register_handler(ik_ivg11, Timer_ISR);
} // end Init_Interrupts

Listing 1: mixed.c

BF535_C_IRQ.c

#include <cdefBF535.h> // BF535 Register Pointer Definitions
#include <sys/exception.h> // Interrupt Handling Header

// Prototypes
void Init_Flags(void); // Flags Mapped To LEDs For BF535-EZKIT
void Init_Timer(void);
void Init_Interrupts(void);

// Selects All LEDs, Also Used For ISR Compare For All LEDs Lit
#define MAX_LED_DISPLAY 0xF // 4 LEDs on BF535, all LIT

EX_INTERRUPT_HANDLER(Timer_ISR)
{
 static int count=-1;

 if (++count > MAX_LED_DISPLAY) // check for all LEDs lit
 count=0; // clear all LEDs on wrap

 *pTIMER0_STATUS = 1; // Clear Timer0 Interrupt
 *pFIO_FLAG_C = 0xF; // clear LEDs
 *pFIO_FLAG_S = count; // display new LED pattern
} // end Timer_ISR

main()
{
 Init_Flags(); // Set All 4 LED PFx Flags To Outputs
 Init_Timer(); // Initialize the Timer0 Registers
 Init_Interrupts(); // Configure the Interrupts

 while(1); // wait forever for interrupts
} // end main

void Init_Flags(void)
{

Using C To Create Interrupt-Driven Systems On Blackfin® Processors (EE-192) Page 7 of 9

 a
 *pFIO_DIR = 0xF; // Configure PF0-3 As Outputs
} // end Init_Flags

void Init_Timer(void)
{
 *pTIMER0_CONFIG = 0x0019; // PWM Mode, Period Count, Interrupt
 *pTIMER0_PERIOD_HI = 0x0100; // Configure Timer Period
 *pTIMER0_PERIOD_LO = 0x0000;
 *pTIMER0_WIDTH_HI = 0x0080; // Configure Timer Width
 *pTIMER0_WIDTH_LO = 0x0000;
 *pTIMER0_STATUS = 0x0100; // Enable Timer0
} // end Init_Timer

void Init_Interrupts(void)
{
 // Enable SIC interrupt, if using Rev 1.0 or higher of ADSP-BF535 silicon,
 // delete the ~ below
 *pSIC_IMASK = ~0x00004000; // Timer0 Default IRQ Is Bit 14

 // install the handler (also sets IVG11 in IMASK)
 register_handler(ik_ivg11, Timer_ISR);
} // end Init_Interrupts

Listing 2: BF535_C_IRQ.c

BF533_C_IRQ.c

#include <cdefBF533.h> // BF533 Register Pointer Definitions
#include <sys/exception.h> // Interrupt Handling Header

// Prototypes
void Init_EBIU_Flash(void); // Flash Init Code Needed For BF533-EZKIT
void Init_Timer(void);
void Init_Interrupts(void);

// Selects All LEDs, Also Used For ISR Compare For All LEDs Lit
#define MAX_LED_DISPLAY 0x3F // 6 LEDs on BF533, all LIT

// Map Flash Port B Registers For LED Access
#define pFlashA_PortB_Dir (volatile unsigned char *)0x20270007
#define pFlashA_PortB_Data (volatile unsigned char *)0x20270005

EX_INTERRUPT_HANDLER(Timer_ISR)
{
 static int count=-1;

 if (++count > MAX_LED_DISPLAY) // check for all LEDs lit
 count=0; // clear all LEDs on wrap

 *pTIMER_STATUS = 1; // Clear Timer0 Interrupt
 *pFlashA_PortB_Data = 0x0; // clear LEDs
 *pFlashA_PortB_Data = count; // write new LED pattern to Port B

} // end Timer_ISR

main()
{

Using C To Create Interrupt-Driven Systems On Blackfin® Processors (EE-192) Page 8 of 9

 a
 Init_EBIU_Flash(); // initialize EBIU for FLASH interface
 Init_Timer(); // Initialize the Timer0 Registers
 Init_Interrupts(); // Configure the Interrupts

 while(1); // wait forever for interrupts
} // end main

void Init_EBIU_Flash(void)
{
 *pEBIU_AMBCTL0 = 0x7bb07bb0;
 *pEBIU_AMBCTL1 = 0x7bb07bb0;
 *pEBIU_AMGCTL = 0x000f;

 *pFlashA_PortB_Dir = MAX_LED_DISPLAY; // 6 LEDs
} // end Init_EBIU_Flash

void Init_Timer(void)
{
 *pTIMER0_CONFIG = 0x0019; // PWM Mode, Period Count, Interrupt
 *pTIMER0_PERIOD = 0x01000000; // Configure Timer Period
 *pTIMER0_WIDTH = 0x00800000; // Configure Timer Width
 *pTIMER_ENABLE = 0x0001; // Enable Timer
} // end Init_Timer

void Init_Interrupts(void)
{
 // Enable the SIC interrupt
 *pSIC_IMASK = 0x00010000; // Timer0 Default IRQ Is Bit 16

 // install the handler (also sets IVG11 in IMASK)
 register_handler(ik_ivg11, Timer_ISR);
} // end Init_Interrupts

Listing 3: BF533_C_IRQ.c

References
[1] ADSP-BF535 Blackfin Hardware Reference. Revision 1.0, November 2002. Analog Devices, Inc.

[2] ADSP-BF533 Blackfin Hardware Reference. Preliminary Revision, March 2003. Analog Devices, Inc.

[3] VisualDSP++ 3.0 C/C++ Compiler and Library Manual for Blackfin Processors. Second Revision,
April 2002. Analog Devices, Inc.

Document History

Version Description

May 28, 2003 by Joe B. Updated interrupt service routine example code.

April 30, 2003 by Joe B. Initial Release

Using C To Create Interrupt-Driven Systems On Blackfin® Processors (EE-192) Page 9 of 9

	Introduction
	Timer Programming Model
	Using Features In VisualDSP++
	Blackfin Interrupts (Hardware)
	Software And Code Flow
	The Code Example
	mixed.c
	BF535_C_IRQ.c
	BF533_C_IRQ.c

	References
	Document History

