
7  DIGITAL FILTER REALIZATION 

7.7 FFT-BASED REALIZATION OF FIR FILTER 

FFT-based FIR filter realization is performed blockwise (as opposed to point by 
point computation in direct realizations). It requires more memory, but it is more 
efficient when the order of the filter is at least 18 (as we will see in the next analysis), so 
it is a serious candidate to consider in some applications. 

7.7.1 BASIC DFT FEATURES 

In the next parts we denote the DFT operation for a length-  signal by N
( ){ }NDFT x n . With this notation we can write { }NDFT  as 

  (7.1) ( ) ( ){ } ( )
1

0
, 0

N
k n

N N
n

X k DFT x n x n W k N
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−

=

= = ≤∑ 1≤ −

and inverse DFT { }NIDF  as 
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N

−

=

= = ≤∑ ≤ −  (7.2) 

where  

 
2j
N

NW e
π

=  (7.3) 

7.7.1.1 ZERO PADDING 

The DFT of a length-  sequence is itself a length-  sequence, so it gives the 
frequency response of the signal at  points. Suppose we are interested in computing 
the frequency response at 

N N
N

M  equally spaced frequency points, where M N> . A simple 
device accomplishes this goal: We add M N−  zeros at the tail of the given sequence, 
thus forming a length- M  sequence. The DFT of the new sequence has M  frequency 
points. 

We prove that the values of the new DFT are indeed samples of the frequency 
response of the given signal at M  equally spaced frequencies. Denote 
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x n n N
x n

N n M
 ≤ ≤ −

= 
≤ ≤ −

 (7.4) 

The operation of adding zeros to the tail of a sequence is called zero padding. The DFT 
of the zero-padded sequence ( )ax n  is given by 

 ( ) ( ) ( ) ( )(
2 21 1

0 0

k n k nM Nj j
M M

a a
n n

)X k x n e x n e X
π π

θ
− −− −

= =

= = =∑ ∑ k  (7.5) 

where  

 ( ) 2 , 0 1kk k
M

Mπθ = ≤ ≤ −  (7.6) 

As we see, ( )aX k  is indeed a sampling of ( )X θ  at M  equally spaced frequency 
points in the range (0,2π . Figure 1 illustrates the zero-padding operation. Part a) 
shows a signal of length , part b) shows the magnitude of its length-  DFT (note 
that we interchange the positive- and negative-index halves). Part c) shows the signal 
obtained by zero padding to length 

8N = N

32M = , and part d) shows the magnitude of the 
length- M  DFT of the zero-padded signal. 

�

�

���� �� �

�

�� �

� � �� � ���

� �

�� �� � �

�

�	�

�
�� �

�� �� � �
�

���

Figure 1 Increasing the DFT length by zero padding 

We can interpret the zero-padded DFT ( )aX l  as interpolation operation on ( )X k . Zero 
padding is typically used for improving the visual continuity of plots frequency 
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responses. When plotting ( )aX k , we typically see more details than when plotting 
( )X k . However, the additional detail do not represent additional information about the 

signal, since all the information is in the  given the samples of N ( )x n . Indeed, 
computation of the inverse DFT of ( )aX k  gives the zero padded sequence ( )ax n , 
which consists only of the ( )x n  and zeros. 

N

1≤}( )
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−
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7.7.1.2 CIRCULAR CONVOLUTION 

Let ( )x n  and  be two finite length sequences, of equal length . We define 
their circular convolution as  

( )y n

  (7.7) ( ) { )( )
1

0
mod , 0z n x x m N n N− ≤ −

Other names for this operation are cyclic convolution and periodic convolution. 
Another useful way to look at circular convolution is to regard it as partial convolution 
of the periodic extensions ){ }, , ( ){ ,y n n−∞ < < ∞  of the two 
sequences ( ){ , 0x n n≤ < , { }1N< − . By “partial” we mean that 
summation is performed only over one period, not from −∞  to ∞ . 

Circular convolution is, similarly to convolution, a commutative and associative 
operation, that is 

 ( ),x x z x y z=  (7.8) 

 
We can now state and prove the convolution and multiplication properties of the 

DFT. 

Convolution theorem 

 } ) ( ) ( )y k X k Y k=  (7.9) 

Proof  
We have 

 )(
1

0
modx m N −   (7.10) )

Using the linearity and shift property of DFT, we can write 

 ( ) ( ) ( )
1 1

0 0

mk
NZ k x Y k x m W X k Y

− −
− =  (7.11) 

Multiplication theorem 

 ) { }(1z n y n X Y k
N

=  (7.12) )
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The proof of this theorem follows from the duality property of DFT. 
We restate the last two theorems, to emphasize their importance1: 

The DFT of a circular convolution of two sequences is the product of the individual 
DFTs. The DFT of a product of two sequences is, up to a proportionality constant, 
the circular convolution of the individual DFTs. 

7.7.1.3 LINEAR CONVOLUTION VIA CIRCULAR CONVOLUTION 

Suppose we are given two finite-duration sequences having different lengths, say 
( ){ }1, 0 1x n n N≤ ≤ − , and ( ){ }2, 0 1y n n N≤ ≤ − , and we wish to perform their 

(conventional) discrete-time convolution 

 ( ) ( ) ( )
2

1

m

m m

z n x m y n m
=

= −∑  (7.13) 

where { }1 2max 0, 1m n= + − N , { }2 1min 1,m N= − n . 
To avoid confusion, we will henceforth refer to conventional convolution as linear 
convolution. 

Let us zero-pad ( )x n  and ( )y n  to a length 1 2 1N N N= + −  and denote the zero-
padded sequences by (a )x n , ( )y na , respectively. Now we can express (7.13) as  

  (7.14) ( ) ( ) ( )
0

, 0 1
n

a a
m

z n x m y n m n N
=

= − ≤∑ ≤ −

The zero-padded sequences have the same length. Let us compute their circular 
convolution: 
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 (7.15) 

In the second sum, the lengths of the two sequences ( )x n  and  impose the 
following limits on the summation index : 

( )y n
m

 1

1

1 1n m N
N n m N n
+ ≤ ≤ −
+ ≤ ≤ +

 (7.16) 

The intersection of these two limits is empty, so the second term of the right side of 
(7.15) is zero. The first term is identical to the right side of (7.14), so the conclusion is 
that 

                                                 
1 The fact that it is circular, rather than conventional convolution that translates to multiplication in 

the frequency domain is a common source of confusion and mistakes. The following claim is often made 
by beginners: ”Linear time-invariant filtering is equivalent to multiplication in the frequency domain. 
Therefore, we can perform linear filtering by computing the DFT  of the input signal ( )X k , multiply by 
the DFT of the impulse response of the filter ( )H k  (which is presumably the frequency response of the 
filter)., and compute the inverse DFT of the product.” This claim is wrong, because the DFT is not the 
frequency response of either the signal or the filter. 
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 { }( ) { }( ) , 0 1a ax y n x y n n N∗ = ≤ ≤ −  (7.17) 

Therefore, we can perform linear convolution of two finite-length sequences by 
computing the circular convolution of the corresponding zero-padded sequences, 
provided zero padding is made to the sum of the lengths minus 1. The circular 
convolution { }a ax y  can be performed by computing DFTs of both sequences, 
multiplying the resulting vectors point by point, and then computing the inverse DFT of 
the result. The advantage of performing the convolution this way will become clear 
when we use the fast Fourier transform (FFT) for speed optimized computation of DFT. 

7.7.2 LINEAR CONVOLUTION BY FFT 

Now it is known how to perform convolution of two finite-duration sequences 
using circular convolution. The method involves zero padding the two sequences to a 
length equal to the sum of individual lengths minus 1. Now, equipped with the FFT, we 
further develop this idea. 

Let the two sequences be ( ){ }1, 0 1x n n N≤ ≤ −  and  ( ){ }2, 0 1y n n N≤ ≤ −
2 1

. Define 
 to be the smallest power of 2 not smaller than N 1N N+ − ( )a and let x n , ( )ay n  be 

the corresponding zero-padded sequences. Then, convolution { }( )x y n∗  can be 
obtained by performing { }( )a ax y n  and retaining the first 1 2 1N N+ −  elements of the 
result. Furthermore the convolution property of the DFT, we can obtain the later by the 
operation 

 ( ) ( ) ( ){ }a az n IDFT X k Y k= a

N

 (7.18) 

The total number of operations, assuming use of a radix-2 FFT, is three times the 
number of operations for a single -point FFT (two for the direct DFTs and one for the 
inverse DFT). This amounts to about 6 l  real multiplications and 9 l  
real additions (less if the input sequences are real and we transform them together by 

 complex FFT). We also need  complex multiplications, or 4  real 
multiplications, to compute the product of the FFTs. By comparison, direct computation 
of the convolution requires about  multiplications and a similar number of 
additions. Therefore, judging by the number of multiplications, it is preferable to 
perform the convolution by FFT whenever 

N
2ogN

N

1 2N N

2ogN N

N/ 2N

 ( ) ( )1 2 1 2 2 1 21 6log 1 4N N N N N N> + − + − +    (7.19) 

In digital signal processing it commonly happens that one of the sequences, say ( )y n
( )

, 
is known a priori and has a fixed length , whereas the other sequence 2N x n , is 
known only in real time, and its length is not fixed and is potentially much larger than 

. We concern ourselves with the problem of computing the linear convolution 2N x y∗  
under these conditions. Using zero padding is possible, but may not be advisable, for 
two reasons: 

1. The sequence y n  will ( ) ( )x n  have to be padded by many zeros, resulting in 
many unnecessary computations 

2. The DFT will have to be performed on very long sequences, which may be 
inconvenient or impossible. 
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A better approach is to split the long sequence  to segments, each of the length  
which is of the same order as , convolve 

1N
2N ( )y n  with each of the segments separately, 

and properly add up the partial results to form the desired convolution x y∗ . This 
method is known as overlap-add convolution. We now describe its details. 

Let us write sequence ( )x n  as 

 ( ) ( )i
i

x n x= n∑  (7.20) 

where 

 ( ) ( ) ( )1 1,
0, otherwisei

x n N i n N i
x n

1 1 ≤ ≤ + −
= 


 (7.21) 

We have left range of the index  unspecified on purpose, to emphasize that the length 
of 

i
( )x n  need not be known in advance. If this length is not an integer multiple of , 

we pad 
1N

( )x n  with zeros to make it so. By linearity of the convolution operator we have 

 ( ) { }( ) { }( )i
i

z n x y n x y n= ∗ = ∗∑  (7.22) 

The convolution { }ix y∗  has length 1 2 1N N+ − , and it is nonzero for the range of time 
points 

 1 1 1 2 2N i n N i N N≤ ≤ + + −  (7.23) 

We can write { }ix y∗  as a sum of two sequences, say 

 ( ) { }( ) ( ) ( )i i i iz n x y n u n v n= ∗ = +  (7.24) 

where  is nonzero in the range ( )iu n

 ( )1 1 1N i n N i 1≤ ≤ + −  (7.25) 

and  is nonzero in the range ( )iv n

 ( ) ( )1 11 1N i n N i N2 2+ ≤ ≤ + + −  (7.26) 

The range of definition of u  coincides with that of ( )i n ( )ix n . On the other hand, the 
range of definition of  coincides with the initial part of the range of ( )niv ( )1ix n+ . 
Therefore, the proper sequence of operations, implied by (7.22) and (7.24), is 

1. Zero-pad ( )ix n  and  to a length ( )y n 1 2 1N N+ − . 
}x y2. Perform the circular convolution { i , which is equal to the linear 

convolution { }ix y∗ . The circular convolution is performed by FFT, as 
explained earlier. 

3. Use u  as a partial result for the ith stage. Add to its initial part the sequence 
 from the previous stage. Save 
( )i n

( )n1iv − ( )iv n  for the ( )1i + stage. 
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Figure 2 illustrates the various sequences, their proper timings, and the way they 
are combined. The signal  in this example has length ( )y n 2 4N = . The length chosen 
for the sequences ( )ix n  is 1N 5= . Accordingly, the lengths of ( )niz , u  and ( )i n ( )iv n  
are 8, 5, and 3, respectively. The reason for the name overlap-add2 should be now clear. 
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Figure 2 Illustration of overlap-add convolution 

The procedure ola in Appendix is a Matlab implementation of the overlap-add 
method. The length of the sequence x  is assumed to be much greater than the length of 

. The FFT of  is computed first and used throughout. Then the program loops over 
the segments, and finally handles the tail of the sequence 
y y

x , which may be shorter than 
the other segments. 

We now discuss the optimal choice of the FFT length  in the overlap-add 
method. We assume that the sequences in question are real. This enables the 
simultaneous computation of the FFTs of two consecutive segments. Since we have the 
freedom to choose , let us choose it such that 

N

1N 1 2 1N N+ −  is a power of 2. The FFT of 
the zero padded  needs to be computed only once, so we ignore the operations it (y n)
                                                 

2 Linear convolution of a long sequence ( )x n  by a fixed-length sequence ( )y n  can also be 
performed by a method called overlap-save, which is dual to overlap-add. 
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requires. For each pair of segments of  output points we need 
 multiplications for the two FFTs (a direct one and an 

inverse one), as well as 4  multiplications for the product of the FFTs. It is 
convenient, in this application, to count the number of operations per sample of the 
signal 

1N
( ) (1 2 2 1 24 1 logN N N N+ − + −

(N N+

( )

)1
)11 2 −

x n . Using the overlap-add method for convolution is more efficient than direct 
convolution when the number of operations per sample is smaller. We thus get the 
criterion 

22 1 N
N 2+ 2<

1

1 1
 −
+ + 

 

2N

2N 1N N

 ( )2 1log 1N N N−  (7.27) 

Table 1 shows the optimal choice of the parameter 1 2 1N N+ −  for various values of 
. The optimum is defined as the value for which the left side of (7.27) is minimal, 

under the constraint that this parameter is an integer power of 2. For  the 
inequality (7.27) does not hold, meaning that direct convolution is more efficient than 
overlap-add. 

2 19N <

Table 1 Optimal choice of the segment length for overlap-add method 
Range of  Optimal 2 1+ −  

19-26 
27-47 
48-86 

87-158 

128 
256 
512 

1024 
 

7.8 ROBUST DIGITAL FILTER STRUCTURES 

Digital filters can be implemented in several ways. The implementation could be a 
simulation on a general purpose computer, or it could be a program running on a 
commercial digital signal processing chip (DSP), or it could be a dedicated piece of 
hardware, for example, a VLSI chip. In any case, the resources such as computational 
units, time, memory, and chip area are finite. One consequence of this fact is  that the 
external and internal signals involved and the filter coefficients are represented by 
binary words of finite length. This causes three kinds of errors in the output of the filter: 

1. There is coefficient quantization, the effect of which is cause errors in the 
transfer function being realized. This is a deterministic type of error, and its 
effect can be evaluated ahead of time. 

2. Error due to quantization of signals, particularly the internal state variables (and 
often nonstate variables). One component of this is a random type of error 
(called roundoff noise) and should accordingly be characterized by stochastic 
models.  

3. The last component is a highly correlated type of error, occurring in the form of 
periodic oscillations called limit cycles. These oscillations can in turn be 
classified as either granular type or overflow type. The former are usually of 
small amplitude and are significant only when the signal level is low, whereas 
overflow oscillations are very large disturbances  
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There exist an infinite number of structures to realize a digital filter. The multipliers that 
appear in the structure are said to be the coefficients of the structure. These structures 
have different properties when implemented in real hardware. E.g. actual frequency 
response of the direct form IIR structure is very sensitive to quantization of coefficients, 
particularly for large filter order  and sharp-cutoff filters. N

There are other structures that are less sensitive (i.e., more robust to coefficient 
quantization) and are generally called low-sensitivity structures. The importance of 
finite wordlength effects should not be overlooked. For example, with a commercial 16-
bit fixed-point DSP chip, roundoff noise effects can be quite significant for sharp-cutoff 
IIR filters. In this chapter we present only two such structures. The first is a general 
overview of State-Space approach and the second is low-sensitivity IIR designs based 
on structural passivity (parallel connection of two allpass filters). Other techniques [2] 
e.g. structures with error feedback, wave digital filters are beyond the scope of this 
subject. 

7.8.1 STATE-SPACE APPROACH FOR LOW-NOISE DESIGNS  

A powerful tool in the understanding and minimization of finite wordlength effects 
in digital filters is based on the state-space formalism. This approach can be used to 
design filters with minimum noise, filters free from limit cycles and often low-
sensitivity filters. 

Consider again IIR transfer function  

 ( )
( )

( )

1

0
1

1

1

N
k

k
N

k

k

b k z
H z

a k z

−
−

=
−

−

=

=
+

∑

∑
 (7.28) 

A difference equation expresses the present output of the system in terms of past 
outputs, and present and past inputs. The delay elements in the direct realizations 
represent the memory of the system, in the sense that their inputs must be stored and 
remembered from one time point to the next. Until now, the outputs of the delay 
elements were of no interest to us by themselves, only as auxiliary variables. 

In this section we study a different way of representing rational LTI systems. In this 
representation, the output of the delay elements play a central role. Collected together, 
they are called the state vector of the system. Correspondingly, the representations we 
are going to present are called state-space representations. A state-space 
representation comprises two equations: The state equation expresses the time 
evolution of the state vector as a function of its own past and the input signal, the 
output equation expresses the output signal as a function of the state vector and the 
input signal. 

To motivate the state-space concept, consider again the direct realization shown in 
Figure 3, introduce the notation 

 ( ) ( ) ( ) ( ) ( ) ( )1 2 31 , 2 , 3s n u n s n u n s n u n= − = − = −  (7.29) 
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Figure 3 Direct realization (direct form II) of a digital IIR system 

In other words, the signal  is the output of the th delay element (starting from 
the top) at time . Then we can read the following relationship directly from the figure: 

( )ks n k
n

 

( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 2 3

2 1

3 2

1 2

1 1 2 3
1
1

( ) 0 1 0 1 2 0 2 3 0 3

s n x n a s n a s n a s n
s n s n
s n s n

y n b x n b b a s n b b a s n b b a s n

+ =
+ =

= + − + − + −        
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

3

+ = − − −



A compact way of writing is 

 
( )
( )
( )

( ) ( ) ( ) ( )
( )
( )

( )
1 1

2

3 3

1 1 2 3 1
1 1 0 0 0
1 0 1 0 0

s n a a a s n
s n s n x n
s n s n

+ − − −       
       + = +       
       +       

2  (7.30) 

 ( ) ( ) ( ) ( )
( )
( )
( )

( ) ( )
1

2

3

1 2 3 0
s n

y n c c c s n b x n
s n

 
 =     
  

+  (7.31) 

where  

 ( ) ( ) ( ) ( )0 , 1c k b k b a k k 3= − ≤ ≤  (7.32) 

These equations can be easily extended to any order  by using matrix notation: N

 ( ) ( ) ( )1n n+ = +s As Bx n  (7.33) 
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 ( ) ( ) ( )y n n Dx n= +Cs  (7.34) 

where  is A N N×  matrix,  is B 1N ×  matrix,  is 1C N×  and  is scalar quantity. 
These matrices are called, respectively, the state, input, output and direct 
transmission matrices. It is clear from the preceding construction that every difference 
equation has a corresponding state-space representation. The procedure tf2ss in the 
Appendix computes these matrices. The transfer function 

D

( )H z  is related to the state-
space-space parameters by (can be also computed by ss2tf procedure in the Appendix) 

  (7.35) ( ) ( ) 1H z D z −= + −C I A B

whereas the impulse response corresponding to ( )H z  is given by 

 ( ) 1

for 0
for 0n

D n
h n

n−

=
=  >CA B

 (7.36) 

If a digital filter structure is such that the elements , , ,  of the state space 
description are also the multiplier coefficients in the structure, then it is called

A B C D
3 a state-

space implementation, state-space realization, or a state-space structure. We can 
show that the eigenvalues of  are the poles of the transfer function A ( )H z

k

. 
Accordingly, a minimal system is stable if and only if  has all eigenvalues A λ  
satisfying 1kλ < . 

Given a state-space description , , , , suppose we replace these matrices 
with , , , , where 

A B C D
A B C D

  (7.37) 1 1, , , D D− −= = =A P AP B P B C CP =

)

and where  is any  nonsingular matrix. This leaves the transfer function 
unchanged. Accordingly, we can derive an equivalent description by using the 
transformation (7.37), which is called the similarity transformation. For a given 
transfer function, there exist an infinite number of state-space realizations, since P  is 
arbitrary. However, some of these realizations have better SNR than others. 
Accordingly, it is possible to find the best state-space structure by minimizing the 
roundoff noise variance at the output (for a given signal level) under scaled conditions. 
This is the main advantage of the state-space approach – it offers a convenient 
mathematical framework to minimize a performance measure. 

P N N×

It should be noted that a state-space realization (i.e., a realization of  with 
multiplier coefficients , , C , ) requires a total of (

( )H z
A B D 21N +  multipliers, which, for 

large , is far in excess of the number of multipliers in a direct form realization. 
Accordingly, minimum noise state-space realizations are usually restricted to second-
order sections, which are then used in a cascade to produce higher order filters. 

N

 

                                                 
3 Note that the direct form is not a state-space implementation, since the elements C  are not the 

multipliers in the Figure 3. 
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7.8.2  LOW-SENSITIVITY IIR DESIGNS BASED ON STRUCTURAL PASSIVITY 

Perhaps the earliest type of filters known to engineers are passive filters, made of 
analog electrical components such as inductors, capacitors, and resistors. These filters, 
if appropriately designed, lead to filters with low pasband sensitivity. These features 
can be applied also to digital filters based on structural passivity losslessness. 

7.8.2.1 BASIC REQUIREMENTS FOR LOW SENSITIVITY 

Consider a digital filter structure with multiplier coefficients , implementing a 
transfer function G z . Assume that  are restricted to be in a well-defined range  
(e.g., such as ). When  are quantized, the response changes in a way 
depending on the structure. Suppose the structure is such that, as long as the belong 
to the permissible range , 

im
( )

1 im− <
im

i1< m
im

( )jG e ω  never exceeds unity. At the frequency kω  where 
( ) 1jG e ω =

 the m
( )

 under ideal conditions, the response can therefore only decrease, no matter 
how ultiplier coefficient  changes. An implementation satisfying the property im

1jG e ω ≤  for all ω  regardless of the values of  in a range  is said to be 
structurally bounded or structurally passive in the range . The special case where 
a realization is such that 

im

( ) 1jG e ω =  for all ω  (regardless of values of m ) is useful in 
implementing allpass filters, which remain allpass despite quantization of . Such an 
implementation is said to be structurally lossless. 

i

im

A stable transfer function ( )G z  satisfying ( ) 1jG e ω ≤  for all ω  is said to be 
bounded or passive. The term “passive” is motivated by the fact that for such systems, 
the output energy is less than or equal to the energy of the input sequence. If, in 
addition, the impulse response of ( )G z  is real (so that ( )G z  is real for all real ) we 
say that G z  is bounded real. Stable allpass transfer functions (which satisfy 

z
( )

( ) 1=jG e ω ) are also called lossless function. For such transfer functions, the energy of 
the output sequence is equal to that of the input sequence, for every finite energy input. 
If a lossless function has real impulse response it is said to be lossless bounded real. 
Any stable transfer function can be scaled so that it becomes bouded. 

Fro ove discussion we conclude this: if a bounded transfer function is such 
that 

m the ab
)( jG e ω  is exactly equal to unity for some passband frequencies, and if it is 

implemented in a structurally passive manner, the resulting system has low pasband 
sensitivity.  

7.8.2.2 STRUCTURES BASED ON TWO ALLPASS FUNCTIONS 

Suppose ( )G z  is a transfer function of the form 

 ( ) ( ) ( )0 1
1
2

G z A z A z= +    (7.38) 

 
where  and  are stable allpass functions with frequency responses ( )0A z ( )1A z

 ( ) ( ) ( ) ( )0
0 1,jj jA e e A e e 1jφ ωω ω= φ ω=  (7.39) 

with ( )0φ ω  and ( )1φ ω  denoting the phase responses. Clearly, ( ) 1jG e ω ≤ , with 
equality when ( )0 1 ( ) 2 kφ ω φ ω π= +  for any integer . If the allpass functions are 
implemented such that they remain (stable and) allpass despite coefficient quantization, 

k
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then  remains bounded despite quantization. This leads to low passband 
sensitivity. At the pasband extrema 

( )G z
kω , where ( ) 1jG e ω = , the phases of (0

jA e )ω  and 
(1

jA e )ω  are aligned, whereas at the transmission zeros (in the stopband of ), the 
phases differ by (odd integer multiplies of) 

( )G z
π . 

N (0A z
r N −

( )0A z
( )0A z

(G z
)0A

3z
3

0.36021 −+ +

2

2

z
z

−

−1− −
− +

It can be shown that classical Butterworth, Chebyshev, and elliptic digital filters 
(and in fact a much wider class of filters) can be represented in the form (7.38). For 
lowpass and highpass filters, if the order  is odd, the orders of  and  are 

 and , respectively, for an appropriate integer r , and these allpass functions 
have real coefficients. If  is even, then 

( )1A z )
r

N  has order  and has complex 
coefficients, and  is obtained from 

/ 2N
( )1A z  by conjugation of coefficients. 

Accordingly, for even , the output of N )  in response to a real input sequence is 
equal to the real part of the output of ( z  in response to the same input. 

Example 
As an example, consider the third-order elliptic transfer function 

 ( )
1 2

1 2

0.23179 0.36021 0.23179
1 0.38409 0.70390 0.13581

z zG z
z z z

− −

− −

+
=

− + −
 −

It can be verified that this transfer function is decomposable as 

 ( )
1 1

1 1

0.20356 0.66715 0.180530.5
1 0.20356 0.18053 0.66715

z zG z
z z

− −

− −

 − +
= + + 

 

which is a sum of two allpass functions. 

APPENDIX - MATLAB PROGRAMS 
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function z = ola(x,y,N); 
% Synopsis: z = ola(x,y,N). 
% Computes the convolution z = x*y by the overlap-add method. 
% Input parameters: 
% x: the long input sequence 
% y: the short  input sequence 
% N: length of the FFT. 
% Output parameters: 
% z: the output sequence. 
 
N2 = length(y); lx = length(x); y = reshape(y,1,N2); 
x = reshape(x,1,lx); z = zeros(1,N2+lx-1); 
lz = length(z); rflag = 0; N1 = N-N2+1; 
if (any(imag(x)) | any(imag(y))), rflag = 1; end 
nframe = floor(lx/N1); ltail = lx - N1*nframe; 
Y = fft([y, zeros(1,N-N2)]); 
for k = 1:nframe, 
   nst = (k-1)*N1; 
   temp = ifft(fft([x(1,nst+1:nst+N1), zeros(1,N-N1)]).*Y); 
   if (rflag), temp = real(temp); end 
   z(1,nst+1:nst+N) = z(1,nst+1:nst+N) + temp; 
end 
if (ltail > 0), 
   nst = nframe*N1+1; temp = [x(1,nst:lx), zeros(1,N-ltail)]; 
   temp = ifft(fft(temp).*Y); 
   if (rflag), temp = real(temp); end 
   z(1,nst:lz) = z(1,nst:lz) + temp(1,1:N2+ltail-1); 
end 
 
 
 
function [A,B,C,D] = tf2ss(b,a); 
% Synopsis: [A,B,C,D] = tf2ss(b,a). 
% Converts a transfer function to direct state-space realization. 
% Inputs: 
% b, a: the numerator and denominator polynomials. 
% Outputs: 
% A, B, C, D: the state-space matrices 
 
p = length(a)-1; q = length(b)-1; N = max(p,q); 
if (N > p), a = [a,zeros(1,N-p)]; end 
if (N > q), b = [b,zeros(1,N-q)]; end 
A = [-a(2:N+1); [eye(N-1), zeros(N-1,1)]]; 
B = [1; zeros(N-1,1)]; 
C = b(2:N+1) - b(1)*a(2:N+1); 
D = b(1); 
 
 
 
function [b,a] = ss2tf(A,B,C,D); 
% Synopsis: [b,a] = tf2ss(A,B,C,D). 
% Converts a state-space realization to a transfer function. 
% Inputs: 
% A, B, C, D: the state-space matrices 
% Outputs: 
% b, a: the numerator and denominator polynomials. 
 
a = poly(A); N = length(a)-1; h = zeros(1,N+1); h(1) = D; tmp = B; 
for i = 1:N, h(i+1) = C*tmp; tmp = A*tmp; end 
b = a*toeplitz([h(1);zeros(N,1)],h); 
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